Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Physical Sciences and Mathematics

Brown Carbon From Photo-Oxidation Of Glyoxal And So2 In Aqueous Aerosol, David O. De Haan, Lelia N. Hawkins, Praveen D. Wickremasinghe, Alyssa D. Andretta, Juliette R. Dignum, Audrey C. De Haan, Hannah G. Welsh, Elyse A. Pennington, Tianqu Cui, Jason D. Surratt, Mathieu Cazaunau, Edouard Pangui, Jean-François Doussin Apr 2023

Brown Carbon From Photo-Oxidation Of Glyoxal And So2 In Aqueous Aerosol, David O. De Haan, Lelia N. Hawkins, Praveen D. Wickremasinghe, Alyssa D. Andretta, Juliette R. Dignum, Audrey C. De Haan, Hannah G. Welsh, Elyse A. Pennington, Tianqu Cui, Jason D. Surratt, Mathieu Cazaunau, Edouard Pangui, Jean-François Doussin

Chemistry and Biochemistry: Faculty Scholarship

Aqueous-phase dark reactions during the co-oxidation of glyoxal and S(IV) were recently identified as a potential source of brown carbon (BrC). Here, we explore the effects of sunlight and oxidants on aqueous solutions of glyoxal and S(IV), and on aqueous aerosol exposed to glyoxal and SO2. We find that BrC is able to form in sunlit, bulk-phase, sulfite-containing solutions, albeit more slowly than in the dark. In more atmospherically relevant chamber experiments where suspended aqueous aerosol particles are exposed to gas-phase glyoxal and SO2, the formation of detectable amounts of BrC requires an OH radical source …


Kinetics, Products, And Brown Carbon Formation By Aqueous-Phase Reactions Of Glycolaldehyde With Atmospheric Amines And Ammonium Sulfate, David O. De Haan, Alyssa A. Rodriguez, Michael A. Rafla, Hannah G. Welsh, Elyse A. Pennington, Jason R. Casar, Lelia N. Hawkins, Natalie G. Jimenez, Alexia De Loera, Devoun R. Stewart, Antonio Rojas, Matthew-Khoa Tran, Peng Lin, Alexander Laskin, Paola Formenti, Mathieu Cazaunau, Edouard Pangui, Jean-François Doussin Aug 2022

Kinetics, Products, And Brown Carbon Formation By Aqueous-Phase Reactions Of Glycolaldehyde With Atmospheric Amines And Ammonium Sulfate, David O. De Haan, Alyssa A. Rodriguez, Michael A. Rafla, Hannah G. Welsh, Elyse A. Pennington, Jason R. Casar, Lelia N. Hawkins, Natalie G. Jimenez, Alexia De Loera, Devoun R. Stewart, Antonio Rojas, Matthew-Khoa Tran, Peng Lin, Alexander Laskin, Paola Formenti, Mathieu Cazaunau, Edouard Pangui, Jean-François Doussin

Chemistry and Biochemistry: Faculty Scholarship

Glycolaldehyde (GAld) is a C2 water-soluble aldehyde produced during the atmospheric oxidation of isoprene and many other species and is commonly found in cloudwater. Previous work has established that glycolaldehyde evaporates more readily from drying aerosol droplets containing ammonium sulfate (AS) than does glyoxal, methylglyoxal, or hydroxyacetone, which implies that it does not oligomerize as quickly as these other species. Here, we report NMR measurements of glycolaldehyde’s aqueous-phase reactions with AS, methylamine, and glycine. Reaction rate constants are smaller than those of respective glyoxal and methylglyoxal reactions in the pH range of 3–6. In follow-up cloud chamber experiments, deliquesced …


Kinetics, Products, And Brown Carbon Formation By Aqueous-Phase Reactions Of Glycolaldehyde With Atmospheric Amines And Ammonium Sulfate (Raw Data), David O. De Haan, Alyssa A. Rodriguez, Michael A. Rafla, Hannah G. Welsh, Elyse A. Pennington, Jason R. Casar, Lelia N. Hawkins, Natalie G. Jimenez, Alexia De Loera, Devoun R. Stewart, Antonio Rojas, Matthew-Khoa Tran, Peng Lin, Alexander Laskin, Paola Formenti, Mathieu Cazaunau, Edouard Pangui, Jean-François Doussin Jul 2022

Kinetics, Products, And Brown Carbon Formation By Aqueous-Phase Reactions Of Glycolaldehyde With Atmospheric Amines And Ammonium Sulfate (Raw Data), David O. De Haan, Alyssa A. Rodriguez, Michael A. Rafla, Hannah G. Welsh, Elyse A. Pennington, Jason R. Casar, Lelia N. Hawkins, Natalie G. Jimenez, Alexia De Loera, Devoun R. Stewart, Antonio Rojas, Matthew-Khoa Tran, Peng Lin, Alexander Laskin, Paola Formenti, Mathieu Cazaunau, Edouard Pangui, Jean-François Doussin

Chemistry and Biochemistry: Faculty Scholarship

The zipped data files are in the following formats: Metadata: Word documents (.docx), Chamber data: Excel spreadsheets (.xlsx) and European Data Format files (.edf), organized by experiment number and instrumentation. “CAPS” files contain cavity attenuated phase shift (CAPS) extinction and scattering data; “SMPS” files contain scanning mobility particle sizing aerosol number and aerosol mass data.


Foldamers Reveal And Validate Therapeutic Targets Associated With Toxic Α-Synuclein Self-Assembly, Jemil Ahmed, Tessa C. Fitch, Courtney M. Donnelly, Johnson A. Joseph, Tyler D. Ball, Mikaela M. Bassil, Ahyun Son, Chen Zhang, Aurélie Ledreux, Scott Horowitz, Yan Qin, Daniel Paredes, Sunil Kumar Apr 2022

Foldamers Reveal And Validate Therapeutic Targets Associated With Toxic Α-Synuclein Self-Assembly, Jemil Ahmed, Tessa C. Fitch, Courtney M. Donnelly, Johnson A. Joseph, Tyler D. Ball, Mikaela M. Bassil, Ahyun Son, Chen Zhang, Aurélie Ledreux, Scott Horowitz, Yan Qin, Daniel Paredes, Sunil Kumar

Chemistry and Biochemistry: Faculty Scholarship

Parkinson’s disease (PD) is a progressive neurodegenerative disorder for which there is no successful prevention or intervention. The pathological hallmark for PD involves the self-assembly of functional Alpha-Synuclein (αS) into non-functional amyloid structures. One of the potential therapeutic interventions against PD is the effective inhibition of αS aggregation. However, the bottleneck towards achieving this goal is the identification of αS domains/sequences that are essential for aggregation. Using a protein mimetic approach, we have identified αS sequences-based targets that are essential for aggregation and will have significant therapeutic implications. An extensive array of in vitro, ex vivo, and in vivo assays …


Radical-Initiated Brown Carbon Formation In Sunlit Carbonyl–Amine–Ammonium Sulfate Mixtures And Aqueous Aerosol Particles, Natalie G. Jimenez, Kyle D. Sharp, Tobin Gramyk, Duncan Z. Ugland, Matthew-Khoa Tran, Antonio Rojas, Michael A. Rafla, Devoun Stewart, Melissa M. Galloway, Peng Lin, Alexander Laskin, Mathieu Cazaunau, Edouard Pangui, Jean-François Doussin, David O. De Haan Jan 2022

Radical-Initiated Brown Carbon Formation In Sunlit Carbonyl–Amine–Ammonium Sulfate Mixtures And Aqueous Aerosol Particles, Natalie G. Jimenez, Kyle D. Sharp, Tobin Gramyk, Duncan Z. Ugland, Matthew-Khoa Tran, Antonio Rojas, Michael A. Rafla, Devoun Stewart, Melissa M. Galloway, Peng Lin, Alexander Laskin, Mathieu Cazaunau, Edouard Pangui, Jean-François Doussin, David O. De Haan

Chemistry and Biochemistry: Faculty Scholarship

Brown carbon (BrC) formed from glyoxal+ammonium sulfate (AS) and methylglyoxal+AS reactions photobleaches quickly, leading to the assumption that BrC formed overnight by Maillard reactions will be rapidly destroyed at sunrise. Here, we tested this assumption by reacting glyoxal, methylglyoxal, glycolaldehyde, or hydroxyacetone in aqueous mixtures with reduced nitrogen species at pH 4–5 in the dark and in sunlight (>350 nm) for at least 10 h. The absorption of fresh carbonyl+AS mixtures decreased when exposed to sunlight, and no BrC formed, as expected from previous work. However, the addition of amines (either methylamine or glycine) allowed BrC to form in …


Iron Speciation In Pm2.5 From Urban, Agriculture, And Mixed Environments In Colorado, Usa, Joseph R. Salazar, David J. Pfotenhauer, Frank Leresche, Fernando L. Rosario-Ortiz, Michael P. Hannigan, Sirine C. Fakra, Brian Majestic Oct 2020

Iron Speciation In Pm2.5 From Urban, Agriculture, And Mixed Environments In Colorado, Usa, Joseph R. Salazar, David J. Pfotenhauer, Frank Leresche, Fernando L. Rosario-Ortiz, Michael P. Hannigan, Sirine C. Fakra, Brian Majestic

Chemistry and Biochemistry: Faculty Scholarship

Atmospheric iron solubility varies depending on whether the particles are collected in rural or urban areas, with urban areas showing increased iron solubility. In this study, we investigate if the iron species present in different environments affects its ultimate solubility. Field data are presented from the Platte River Air Pollution and Photochemistry Experiment (PRAPPE), aimed at understanding the interactions between organic carbon and trace elements in atmospheric particulate matter (PM). 24-hr PM2.5 samples were collected during the summer and winter (2016–2017), at three different sites on the Eastern Colorado plains: an urban, agricultural, and a mixed site. Downtown Denver had …


Glyoxal’S Impact On Dry Ammonium Salts: Fast And Reversible Surface Aerosol Browning (Raw Data), David O. De Haan Phd, Lelia N. Hawkins Phd, Margaret A. Tolbert Phd, Jean-François Doussin Jul 2020

Glyoxal’S Impact On Dry Ammonium Salts: Fast And Reversible Surface Aerosol Browning (Raw Data), David O. De Haan Phd, Lelia N. Hawkins Phd, Margaret A. Tolbert Phd, Jean-François Doussin

Chemistry and Biochemistry: Faculty Scholarship

Alpha-dicarbonyl compounds are believed to form brown carbon in the atmosphere via reactions with ammonium sulfate (AS) in cloud droplets and aqueous aerosol particles. In this work, brown carbon formation in AS and other aerosol particles was quantified as a function of relative humidity (RH) during exposure to gas-phase glyoxal (GX) in chamber experiments. Under dry conditions (RH < 5%), solid AS, AS/glycine, and methylammonium sulfate aerosol particles brown within minutes upon exposure to GX, while sodium sulfate particles do not. When GX concentrations decline, browning goes away, demonstrating that this dry browning process is reversible. Declines in aerosol albedo are found to be a function of [GX]2, and are consistent between AS and AS/glycine aerosol. Dry methylammonium sulfate aerosol browns 4´ more than dry AS aerosol, but deliquesced AS aerosol browns much less than dry AS aerosol. Optical measurements at 405, 450, and 530 nm provide an estimated Ångstrom absorbance coefficient of -16 ±4. This coefficient and the empirical relationship between GX and albedo are used to estimate an upper limit to global radiative forcing by brown carbon formed by 70 ppt GX reacting with AS (+7.6 ´10-5 W/m2). This quantity is < 1% of the total radiative forcing by secondary brown carbon, but occurs almost entirely in the ultraviolet range.

The zipped data files are in the following formats: Igor experiments (.pxp), Word documents (.docx), Excel spreadsheets (.xlsx), organized by experiment number. “Optical” files contain cavity attenuated phase shift (CAPS) extinction, scattering and albedo data; PILS/waveguide data (experiments 1,2, and 5 only); …


Glyoxal’S Impact On Dry Ammonium Salts: Fast And Reversible Surface Aerosol Browning, David O. De Haan Phd, Lelia N. Hawkins Phd, Kevin Jansen, Hannah G. Welsh, Raunak Pednekar, Alexia De Loera, Natalie G. Jimenez, Margaret A. Tolbert Phd, Mathieu Cazaunau Phd, Aline Gratien, Antonin Bergé, Edouard Pangui, Paola Formenti, Jean-François Doussin Jul 2020

Glyoxal’S Impact On Dry Ammonium Salts: Fast And Reversible Surface Aerosol Browning, David O. De Haan Phd, Lelia N. Hawkins Phd, Kevin Jansen, Hannah G. Welsh, Raunak Pednekar, Alexia De Loera, Natalie G. Jimenez, Margaret A. Tolbert Phd, Mathieu Cazaunau Phd, Aline Gratien, Antonin Bergé, Edouard Pangui, Paola Formenti, Jean-François Doussin

Chemistry and Biochemistry: Faculty Scholarship

Alpha-dicarbonyl compounds are believed to form brown carbon in the atmosphere via reactions with ammonium sulfate (AS) in cloud droplets and aqueous aerosol particles. In this work, brown carbon formation in AS and other aerosol particles was quantified as a function of relative humidity (RH) during exposure to gas-phase glyoxal (GX) in chamber experiments. Under dry conditions (RH < 5%), solid AS, AS/glycine, and methylammonium sulfate aerosol particles brown within minutes upon exposure to GX, while sodium sulfate particles do not. When GX concentrations decline, browning goes away, demonstrating that this dry browning process is reversible. Declines in aerosol albedo are found to be a function of [GX]2, and are consistent between AS and AS/glycine aerosol. Dry methylammonium sulfate aerosol browns 4´ more than dry AS aerosol, but deliquesced AS aerosol browns much less than dry AS aerosol. Optical measurements at 405, 450, and 530 nm provide an …


Brown Carbon Production By Aqueous-Phase Interactions Of Glyoxal And So2, David O. De Haan, Kevin Jansen, Alec D. Rynaski, W. Ryan P. Sueme, Ashley K. Torkelson, Eric T. Czer, Alexander K. Kim, Michael A. Rafla, Audrey C. De Haan, Margaret A. Tolbert Mar 2020

Brown Carbon Production By Aqueous-Phase Interactions Of Glyoxal And So2, David O. De Haan, Kevin Jansen, Alec D. Rynaski, W. Ryan P. Sueme, Ashley K. Torkelson, Eric T. Czer, Alexander K. Kim, Michael A. Rafla, Audrey C. De Haan, Margaret A. Tolbert

Chemistry and Biochemistry: Faculty Scholarship

Oxalic acid and sulfate salts are major components of aerosol particles. Here, we explore the potential for their respective precursor species, glyoxal and SO2, to form atmospheric brown carbon via aqueous-phase reactions in a series of bulk aqueous and flow chamber aerosol experiments. In bulk aqueous solutions, UV- and visible-light-absorbing products are observed at pH 3–4 and 5–6, respectively, with small but detectable yields of hydroxyquinone and polyketone products formed, especially at pH 6. Hydroxymethanesulfonate (HMS), C2, and C3 sulfonates are major products detected by electrospray ionization mass spectrometry (ESI-MS) at pH 5. Past studies …


Methylglyoxal Uptake Coefficients On Aqueous Aerosol Surfaces, David O. De Haan, Natalie G. Jimenez, Alexia De Loera, Mathieu Cazaunau, Aline Gratien, Edouard Pangui, Jean-Francois Doussin May 2018

Methylglyoxal Uptake Coefficients On Aqueous Aerosol Surfaces, David O. De Haan, Natalie G. Jimenez, Alexia De Loera, Mathieu Cazaunau, Aline Gratien, Edouard Pangui, Jean-Francois Doussin

Chemistry and Biochemistry: Faculty Scholarship

In order to predict the amount of secondary organic aerosol formed by heterogeneous processing of methylglyoxal, uptake coefficients (γ) and estimates of uptake reversibility are needed. Here, uptake coefficients are extracted from chamber studies involving ammonium sulfate and glycine seed aerosol at high relative humidity (RH ≥ 72%). Methylglyoxal uptake coefficients on prereacted glycine aerosol particles had a strong dependence on RH, increasing from γ = 0.4 × 10–3 to 5.7 × 10–3 between 72 and 99% RH. Continuous methylglyoxal losses were also observed in the presence of aqueous ammonium sulfate at 95% RH (γAS,wet = 3.7 ± 0.8 × …


The Micro-Orifice Uniform Deposit Impactor–Droplet Freezing Technique (Moudi-Dft) For Measuring Concentrations Of Ice Nucleating Particles As A Function Of Size: Improvements And Initial Validation, R. H. Mason, C. Chou, C. S. Mccluskey, E. J. T. Levin, C. L. Schiller, T. C. J. Hill, J. Alex Huffman, P. J. Demott, A. K. Bertram Jan 2015

The Micro-Orifice Uniform Deposit Impactor–Droplet Freezing Technique (Moudi-Dft) For Measuring Concentrations Of Ice Nucleating Particles As A Function Of Size: Improvements And Initial Validation, R. H. Mason, C. Chou, C. S. Mccluskey, E. J. T. Levin, C. L. Schiller, T. C. J. Hill, J. Alex Huffman, P. J. Demott, A. K. Bertram

Chemistry and Biochemistry: Faculty Scholarship

The micro-orifice uniform deposit impactor– droplet freezing technique (MOUDI-DFT) combines particle collection by inertial impaction (via the MOUDI) and a microscope-based immersion freezing apparatus (the DFT) to measure atmospheric concentrations of ice nucleating particles (INPs) as a function of size and temperature. In the first part of this study we improved upon this recently introduced technique. Using optical microscopy, we investigated the non-uniformity of MOUDI aerosol deposits at spatial resolutions of 1, 0.25 mm, and for some stages when necessary 0.10 mm. The results from these measurements show that at a spatial resolution of 1mm and less, the concentration of …


Regional-Scale Simulations Of Fungal Spore Aerosols Using An Emission Parameterization Adapted To Local Measurements Of Fluorescent Biological Aerosol Particles, Matthias Hummel, Corinna Hoose, M. Gallagher, D. A. Healy, J. Alex Huffman, D. O'Connor, U. Pöschl, C. Pöhlker, N. H. Robinson, M. Schnaiter, J. R. Sodeau, M. Stengel, E. Toprak, H. Vogel Jan 2015

Regional-Scale Simulations Of Fungal Spore Aerosols Using An Emission Parameterization Adapted To Local Measurements Of Fluorescent Biological Aerosol Particles, Matthias Hummel, Corinna Hoose, M. Gallagher, D. A. Healy, J. Alex Huffman, D. O'Connor, U. Pöschl, C. Pöhlker, N. H. Robinson, M. Schnaiter, J. R. Sodeau, M. Stengel, E. Toprak, H. Vogel

Chemistry and Biochemistry: Faculty Scholarship

Fungal spores as a prominent type of primary biological aerosol particles (PBAP) have been incorporated into the COSMO-ART (Consortium for Small-scale Modelling- Aerosols and Reactive Trace gases) regional atmospheric model. Two literature-based emission rates for fungal spores derived from fungal spore colony counts and chemical tracer measurements were used as a parameterization baseline for this study. A third, new emission parameterization for fluorescent biological aerosol particles (FBAP) was adapted to field measurements from four locations across Europe. FBAP concentrations can be regarded as a lower estimate of total PBAP concentrations. Size distributions of FBAP often show a distinct mode at …