Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Physical Sciences and Mathematics

Designing Polymers With Stimuli-Responsive Degradation For Biomedical Applications, Chuanfeng Li, Zhengyu Deng, Elizabeth R. Gillies Mar 2023

Designing Polymers With Stimuli-Responsive Degradation For Biomedical Applications, Chuanfeng Li, Zhengyu Deng, Elizabeth R. Gillies

Chemistry Publications

Early biomedical applications of polymers were in areas such as joint replacements and often involved durable polymers. However, biodegradable polymers are increasingly being used to perform temporary functions such as drug delivery or supporting cells, after which they can break down and be eliminated from the body. Polymers that degrade specifically in response to stimuli offer additional opportunities to control when and where this degradation occurs, enabling enhanced functions such as site-specific drug release and the early detection of disease. In this article, we will discuss recent advancements in the design, preparation, and application of stimuli-responsive polymer degradation. In …


Polymer Particles For The Intra-Articular Delivery Of Drugs To Treat Osteoarthritis, Xueli Mei, Ian J. Villamagna, Tony Nguyen, Frank Beier, C. Thomas Appleton, Elizabeth R. Gillies Apr 2021

Polymer Particles For The Intra-Articular Delivery Of Drugs To Treat Osteoarthritis, Xueli Mei, Ian J. Villamagna, Tony Nguyen, Frank Beier, C. Thomas Appleton, Elizabeth R. Gillies

Chemistry Publications

Osteoarthritis (OA) is a leading cause of chronic disability. It is a progressive disease, involving pathological changes to the entire joint, resulting in joint pain, stiffness, swelling, and loss of mobility. There is currently no disease-modifying pharmaceutical treatment for OA, and the treatments that do exist suffer from significant side effects. An increasing understanding of the molecular pathways involved in OA is leading to many potential drug targets. However, both current and new therapies can benefit from a targeted approach that delivers drugs selectively to joints at therapeutic concentrations, while limiting systemic exposure to the drugs. Delivery systems including hydrogels, …


Ph-Sensitive Chitosan Nanoparticles For Salivary Protein Delivery, Yi Zhu, Lina M. Marin, Yizhi Xiao, Elizabeth R. Gillies, Walter L. Siqueira Apr 2021

Ph-Sensitive Chitosan Nanoparticles For Salivary Protein Delivery, Yi Zhu, Lina M. Marin, Yizhi Xiao, Elizabeth R. Gillies, Walter L. Siqueira

Chemistry Publications

Salivary proteins such as histatins (HTNs) have demonstrated critical biological functions directly related to tooth homeostasis and prevention of dental caries. However, HTNs are susceptible to the high proteolytic activities in the oral environment. Therefore, pH-sensitive chitosan nanoparti-cles (CNs) have been proposed as potential carriers to protect proteins from enzymatic degradation at physiological salivary pH. Four different types of chitosan polymers were investigated and the optimal formulation had good batch to batch reproducibility, with an average hydrodynamic diame-ter of 144 ± 6 nm, a polydispersity index of 0.15 ± 0.04, and a zeta potential of 18 ± 4 mV at …


The Incorporation Of Phosphorus Into Polymer Networks For Drug Encapsulation And Release, Tristan D. Harrison Mar 2020

The Incorporation Of Phosphorus Into Polymer Networks For Drug Encapsulation And Release, Tristan D. Harrison

Electronic Thesis and Dissertation Repository

This thesis focuses on the incorporation of phosphonium salts into polymer networks for uses in drug delivery and antibacterial coatings. Compared to their ammonium analogues, which have been extensively investigated, phosphonium salts were of interest due to their different chemical properties and their higher chemical and thermal stabilities. The thesis describes the development of covalently crosslinked hydrogels, ionically crosslinked hydrogels and thin film materials to be utilized in the aforementioned applications.

Covalently crosslinked hydrogels were developed with the targeted application of drug delivery. The hydrogels were created by curing formulations with ultra-violet light. Then, anionic drug molecules were loaded, which …


Development Of In Situ Forming Hydrogels For Intra-Articular Drug Delivery, Andy Prince Feb 2019

Development Of In Situ Forming Hydrogels For Intra-Articular Drug Delivery, Andy Prince

Electronic Thesis and Dissertation Repository

Hydrogels are 3-dimensional crosslinked polymer networks that can absorb significant amounts of water. The physical properties associated with hydrogels affords them resemblance to biological tissues making them good candidates for biomedical applications. Many pharmaceuticals, specifically non-steroidal anti-inflammatory drugs (NSAIDs), have poor aqueous solubility, which limits their bioavailability and efficacy. People suffering from chronic osteoarthritis (OA) are required to frequently take large doses to mitigate pain, which can lead to serious side effects. Hydrogels are good strategies to deliver NSAIDs via articular injection because they can form solid gels in situ. This thesis describes the synthesis, formulation, mechanical testing, in …


Fabrication And Modification Of Titania Nanotube Arrays For Harvesting Solar Energy And Drug Delivery Applications, Ahmed El Ruby Abdel Rahman Mohamed Dec 2017

Fabrication And Modification Of Titania Nanotube Arrays For Harvesting Solar Energy And Drug Delivery Applications, Ahmed El Ruby Abdel Rahman Mohamed

Electronic Thesis and Dissertation Repository

The fast diminishing of fossil fuels in the near future, as well as the global warming caused by increasing greenhouse gases have motivated the urgent quest to develop advanced materials as cost-effective photoanodes for solar light harvesting and many other photocatalytic applications. Recently, titania nanotube arrays (TNTAs) fabricated by anodization process has attracted great interest due to their excellent properties such as: high surface area, vertically oriented, highly organized, one-dimensional, nanotubular structure, photoactivity, chemical stability and biocompatibility. This unique combination of excellent properties makes TNTAs an excellent photoanode for solar light harvesting. However, the relatively wide band gap energy of …


Poly(Ethyl Glyoxylate)-Poly(Ethylene Oxide) Nanoparticles: Stimuli- Responsive Drug Release Via End-To-End Polyglyoxylate Depolymerization, Bo Fan, Elizabeth Gillies Mar 2017

Poly(Ethyl Glyoxylate)-Poly(Ethylene Oxide) Nanoparticles: Stimuli- Responsive Drug Release Via End-To-End Polyglyoxylate Depolymerization, Bo Fan, Elizabeth Gillies

Chemistry Publications

The ability to disrupt polymer assemblies in response to specifi c stimuli provides the potential to release drugs selectively at certain sites or conditions in vivo. However, most stimuli-responsive delivery systems require many stimuli initiated events to release drugs. Self-immolative polymers offer the potential to provide amplifi ed responses to stimuli as they undergo complete end-to-end depolymerization following the cleavage of a single end-cap. Herein, linker end-caps were developed to conjugate self-immolative poly(ethyl glyoxylate) (PEtG) with poly(ethylene oxide) (PEO) to form amphiphilic block copolymers. These copolymers were self-assembled to form nanoparticles in aqueous solution. Cleavage of the linker …


Polyglyoxylates: A New Class Of Triggerable Self-Immolative Polymers, Bo Fan Dec 2014

Polyglyoxylates: A New Class Of Triggerable Self-Immolative Polymers, Bo Fan

Electronic Thesis and Dissertation Repository

Self-immolative polymers, which degrade by an end-to-end depolymerization mechanism in response to the cleavage of a stabilizing end-cap from the polymer terminus, are of increasing interest for a wide variety of applications ranging from sensors to controlled release. However, the preparation of these materials often requires expensive, multi-step monomer syntheses and the degradation products such as quinone methides or phthalaldehydes are potentially toxic to humans and the environment. We demonstrate here that polyglyxoylates can serve as a new and versatile class of self-immolative polymers. Polymerization of the commercially available monomer ethyl glyoxylate, followed by end-capping with a 6-nitroveratryl carbonate provides …


Poly(Ester Amide) And Poly(Ethyl Glyoxylate) Nanoparticles For Controlled Drug Release, Amira Mohamed Moustafa Dec 2014

Poly(Ester Amide) And Poly(Ethyl Glyoxylate) Nanoparticles For Controlled Drug Release, Amira Mohamed Moustafa

Electronic Thesis and Dissertation Repository

The objective of this research was to develop polymeric nanoparticles (NPs) having improved drug release properties for drug delivery. Poly(ester amide)s (PEAs) are promising biodegradable polymers. PEA NPs were prepared via emulsification-evaporation and salting-out methods and optimized through by varying different processing parameters. Polymer-model drug conjugates based on PEAs containing L-aspartic acid and rhodamine B were synthesized and used for NP preparation. Release behavior was studied and compared to a control system with physically encapsulated rhodamine B. It was shown that the release of rhodamine B from the covalent system did not show the burst effect and exhibited a slower …