Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Physical Sciences and Mathematics

Upcyclying Of Polyethylene Terephtalate By Addition Of Thermoplastic Elastomer, Diego Francisco Bermudez Dec 2023

Upcyclying Of Polyethylene Terephtalate By Addition Of Thermoplastic Elastomer, Diego Francisco Bermudez

Open Access Theses & Dissertations

Continual overconsumption of single-use plastics has generated challenges of solid waste management across the United States. Common plastic waste management solutions, such as landfill, have caused the migration of contaminants into the environment consequently affecting not only the health of wildlife, but also that of human beings. Alternative strategies for the handling of single-use plastic such as polyethylene terephthalate (PET), used in the food packaging industry, can ultimately help mitigate the noxious consequences of single-use plastics affecting entire ecosystems. This study demonstrates a potential avenue of materials upcycling by studying the effects of coupling PET with the thermoplastic elastomer styrene-ethylene-butylene-styrene …


Sterically Encumbering Ligands For The Synthesis And Stabilization Of Iron Nitride And Iron Oxo Compounds, Asiel Mena Dec 2023

Sterically Encumbering Ligands For The Synthesis And Stabilization Of Iron Nitride And Iron Oxo Compounds, Asiel Mena

Open Access Theses & Dissertations

The study of iron-nitrides has been found to be very attractive due to their potential role in processes like Haber-Bosch and nitrogen fixation by nitrogenase. The role of iron-nitrides in these processes is yet not well understood, and the fact that only handful of terminal iron-nitrides have been isolated or spectroscopically detected motivates us to study this type of systems, since much remains to be learned about the electronic and structural factors that affect the chemistry of the Feâ?¡N bond. Recently in our group, by using a super-bulky guanidinate ligand (LAr*), the obtention of an iron-nitride ([LAr*]FeN(py) (LAr* = (Ar*N)2C(NCtBu2), …


A Noninvasive Urine-Based Method For Kidney Cancer Early Detection, Kiana Holbrook Dec 2023

A Noninvasive Urine-Based Method For Kidney Cancer Early Detection, Kiana Holbrook

Open Access Theses & Dissertations

Based on the traditional serological uses to obtain diagnoses of cancer and biopsy techniques, common cancer detection could be not only invasive but expensive and some tests are also unreliable. Currently, urine is one of the most frequently used and collected specimens in the clinical diagnoses. While the areas of urinalysis and metabolomic profiling has received interest in the top clinical research, there are limited components to the validity, specificity, as well as sensitivity of endogenous urine substrates to detect early stages of cancers. Although there is research showcasing that urine is impacted by age, cancer type, geographical location, and …


Computation-Assisted Molecular Discovery For Biomedical Applications: Seeking Small Molecules And Dna Sequences With High Affinity Target Binding, Payam Kelich Dec 2023

Computation-Assisted Molecular Discovery For Biomedical Applications: Seeking Small Molecules And Dna Sequences With High Affinity Target Binding, Payam Kelich

Open Access Theses & Dissertations

Binding affinity between two molecules is an essential property in drug and sensor discovery. Several computational and experimental methods exist to find molecules with high binding affinities to desired target molecules. These methods are often complementary, where fast computational methods can be used for the initial screening of molecules, and experimental methods can then screen and determine the molecules of interest and sometimes define the structures of bound complexes. After these steps, computational methods, like molecular dynamics (MD) simulations, can provide detailed insights into atomic interactions and binding, and machine learning approaches can analyze experiment-derived data to discern patterns and …


Green Analytical Methods For The Determination Of Perfluorocarboxylic Acids (Pfcas) And Fluorotelomer Alcohols (Ftohs) In Water, Ahsan Habib Dec 2023

Green Analytical Methods For The Determination Of Perfluorocarboxylic Acids (Pfcas) And Fluorotelomer Alcohols (Ftohs) In Water, Ahsan Habib

Open Access Theses & Dissertations

Per- and polyfluoroalkyl substances (PFAS) are a large group of synthetic organic compounds manufactured for their heat, water, and stain-resistant properties. PFAS can be found ubiquitously in the environment because they are widely used in everyday consumer products such as fast-food wrappers, non-stick cookware, stain-resistant products, cosmetics, aqueous film-forming foams, etc. As a result, PFAS are commonly detected in surface water, wastewater, and biosolids from wastewater treatment plants (WWTPs). These are the direct sources of PFAS contamination in drinking water supplies, which are substantial sources of human exposure. Among these PFAS chemicals, two major groups are perfluoroalkyl carboxylic acids (PFCAs) …


Study Of Human Circadian Protein (Hrory) And Lipid-Protein Interaction In Giant Virus (Pbcv-1), Laila Noor Dec 2023

Study Of Human Circadian Protein (Hrory) And Lipid-Protein Interaction In Giant Virus (Pbcv-1), Laila Noor

Open Access Theses & Dissertations

Project 1: Circadian rhythm is a 24-hour cycle that regulates physical and behavioral changes such as sleep-wake patterns in humans, tailoring the daily light and dark changes. Long-term disruption in circadian rhythms can cause sleep disorders such as sleep apnea, insomnia, et al. Limited research has been done on potential drugs to treat against circadian related sleep disorders. Inside the cell at molecular level, the circadian rhythm is regulated by interlocked time-delayed feedback loops, which involve positive and negative transcriptional regulators. Experimental results showed transcriptional factors Retinoic Acid Receptor-Related Orphan Receptors (RORs) improve the stability and functionality of the circadian …


Synthesis And Characterization Of Acetaminophen-Derived Nanoparticles: A Novel Approach To Inhibit Fibril Formation, Hannia Elena Mendoza-Dickey Dec 2023

Synthesis And Characterization Of Acetaminophen-Derived Nanoparticles: A Novel Approach To Inhibit Fibril Formation, Hannia Elena Mendoza-Dickey

Open Access Theses & Dissertations

In the realm of nanotechnology, nanoparticles (NPs), have garnered significant notoriety in recent scientific research due to their unique physical and chemical properties, such as fluorescence emissions, nanoscale dimensions (typically <1000 nm), ease of surface modification, and biocompatibility. Nanoparticles have shown their potential across a variety of areas, including advanced industrial applications and cutting-edge biomedical research. Considering their cost-effective synthesis, they have shown promise as therapeutic agents for a variety of bioimaging and biomedical applications. This thesis describes the synthesis and detailed analysis of acetaminophen-derived nanoparticles. Techniques such as Dynamic Light Scattering (DLS), Thioflavin T (THT) assay, Attenuated Total Reflectance Infrared Spectroscopy (ATR-IR), 1H NMR spectroscopy, and Ultraviolet-Visible Spectroscopy (UV-VIS) were utilized for structural and functional assessments. Acetaminophen derived nanoparticles (ANPs) exhibit potential to hinder the amyloidogenic conversion of soluble amyloid-forming proteins into their toxic form. The novelty of this research focuses on the utilization of chemical structures capable of traversing the Blood Brain Barrier (BBB) to mitigate xenotoxicant-induced neuronal damage, a notable contributor to neurodegenerative disorders. This thesis describes the synthesis and characterization of acetaminophen derived-nanoparticles (ANPs). Our nanoparticles possess anti-amyloidogenic properties as evidenced by their ability to disrupt in the soluble-to-toxic trajectory of HEWL. The prevalence and evolution of amyloid fibrils are consistent features in the pathology of neurodegenerative diseases such as Parkinson's disease (PD), Alzheimerâ??s Disease (AD), and Huntingtonâ??s Disease (HD), as well as metabolic disorders like Type 2 diabetes (T2D). The relationship between amyloidogenic pathways and these disorders highlights the imperative for enhanced understanding and the formulation of specific therapeutic interventions.


Inkjet-Printed Electrochemical Sensors For Lead Detection, Annatoma Arif Aug 2023

Inkjet-Printed Electrochemical Sensors For Lead Detection, Annatoma Arif

Open Access Theses & Dissertations

This PhD dissertation research has developed a simple, miniaturized, sensitive, selective, reproducible, and disposable 3D (inkjet printed – additive manufacturing technology) gold (Au) plated electrochemical sensor (ECS) on shape memory polymer (SMP) for aqueous lead detection. This technology has shown promising performance in the application of electrochemical sensing (lead (II) detection) due to increased effective electrode surface area (7.25 mm^2 ± 0.15 mm^2) despite miniaturizing lateral surface area (4.19 mm^2). The design, fabrication processes, optimization including bismuth functionalization, evaluation, uncertainty analysis, and cost analysis of the novel SMP based inkjet printed Au plated sensor have been delineated in this manuscript …


A Dft Analysis And Simple Hamiltonian Modeling Of A Molecular System Employed For Experimental Evidence Of Quantum Teleportation, Pedro Ulises Medina Gonzalez Aug 2023

A Dft Analysis And Simple Hamiltonian Modeling Of A Molecular System Employed For Experimental Evidence Of Quantum Teleportation, Pedro Ulises Medina Gonzalez

Open Access Theses & Dissertations

Radical ion pairs (RIPs) have been used to demonstrate quantum teleportation in molecular systems for applications in quantum information science. Covalent organic donor-acceptor (D-A) molecules can produce RIPs through photo-induced charge transfer and an additional radical (R) molecule makes quantum teleportation possible. We present the electronic structure and analyze charge transfer excited states of a recently studied [1] D-A-R molecular system using density functional theory. The distances between donor-acceptor and donor-radical are about 12.9 \AA $\,$ and 21.9 \AA, respectively. The excitation energies are calculated using the perturbative delta-SCF method and agree with other conventional excited-state methods and experimental reference …


Removal Of Nonylphenols From Water And Wastewater Using Alginate-Activated Carbon Beads, Angelica Araly Chacon Aug 2023

Removal Of Nonylphenols From Water And Wastewater Using Alginate-Activated Carbon Beads, Angelica Araly Chacon

Open Access Theses & Dissertations

The presence of contaminants of emerging concern (CECs) have been affecting water quality in recent years. The United States Environmental Protection Agency (U.S EPA) defines CECs as toxic chemicals without regulatory status and with adversely impact on the wildlife and people. Among the CECs, nonylphenols (NPs) are frequently found in all water systems and are categorized as endocrine-disrupting compounds (EDCs) due to their ability to mimic hormones causing reproductive and developmental effects in humans and animals. The main sources of discharge and distribution of NPs into the environment are wastewater treatment plants (WWTPs) which are not designed to remove them. …


Electrochemical Approaches To Life-Support Resources In Space Missions And Nuclear Technologies: Hydrogen Peroxide And Uranium Films, Armando Manuel Pena-Duarte Aug 2023

Electrochemical Approaches To Life-Support Resources In Space Missions And Nuclear Technologies: Hydrogen Peroxide And Uranium Films, Armando Manuel Pena-Duarte

Open Access Theses & Dissertations

Space race has developed several technological advances that have achieved and continue to achieve the success of space missions in the aerospace timeline. Currently, the number of space technical and scientific innovations is still growing––demanding new materials and developments for extreme performing applications of fuel cells, batteries, supercapacitors, and systems of nuclear energy. Space missions require life-support solutions, auto-sustainable closed-loop living environments, cleaning and sanitizing solutions against pathogens, and safe nuclear-based resources of energy––with fissile materials with well-controlled dimensions within the core fuel elements. Likewise, to guarantee safety conditions, reduce costs, and facilitate operational logistics, space missions must reduce their …


Advances In One-Electron Self-Interaction-Correction Methods For Accurate And Efficient Self-Interaction-Free Density Functional Calculations, Selim Romero Aug 2023

Advances In One-Electron Self-Interaction-Correction Methods For Accurate And Efficient Self-Interaction-Free Density Functional Calculations, Selim Romero

Open Access Theses & Dissertations

Density functional theory (DFT) is a widely used computational method for studying electronic structures of atoms, molecules, and solids. It provides an exact theory for obtaining ground state energy from the ground state density. However, since the exact exchange-correlation functional remains unknown, approximate exchange-correlation functionals called approximate density approximations (DFAs) are used. The foundation of many DFAs is the local spin density approximation (LSDA). It serves as the starting point for constructing various DFAs. However, DFAs are prone to self-interaction errors (SIE) due to the improper cancellation of the approximate exchange energy and the Coulomb energy. This issue impacts the …


Developing And Applying Computational Methods On Biomolecules, Shengjie Sun May 2023

Developing And Applying Computational Methods On Biomolecules, Shengjie Sun

Open Access Theses & Dissertations

Computational biophysics is an interdisciplinary subject that uses numerical algorithms to study the physical principles underlying biological phenomena and processes. Electrostatic interactions play an important role in computational molecular biophysics and their potential impact on disease mechanisms. At distances larger than several Angstroms, electrostatic interactions dominate all other forces, while the alteration of short-range electrostatic pairwise interactions can also have significant effects. The dual nature of electrostatic interactions, being dominant at long-range and specific at short-range, underscores their profound implications for wild-type structure and function. Any disruption of the complex electrostatic network of interactions may abolish wild-type functionality and could …


Structure Study Of Small Heat Shock Protein 27, Zhaobo Li May 2023

Structure Study Of Small Heat Shock Protein 27, Zhaobo Li

Open Access Theses & Dissertations

Molecular chaperones are a class of oligomeric proteins that play a critical role inpreventing the aggregation of non-native protein so that these proteins can later be refolded. Chaperones are ubiquitously expressed in all the kingdoms of life where their function is to counteract cellular stress and to maintain protein homeostasis. One subgroup of molecular chaperones is characterized by low molecular weight and are termed small heat shock proteins. The focus of the proposed research is the small heat shock protein 27 (Hsp27). Hsp27 is an ATP independent chaperone that is overexpressed in response to heat shock, radiation damage, oxidative damage, …


Novel Pathways To Tailor Charge And Spin In Materials And Investigating The Impact On Sensing And Electrochemical Energy Applications, Aruna Narayanan Nair May 2023

Novel Pathways To Tailor Charge And Spin In Materials And Investigating The Impact On Sensing And Electrochemical Energy Applications, Aruna Narayanan Nair

Open Access Theses & Dissertations

Catalysis is integral to our daily lives, as it streamlines and accelerates numerous chemical reactions essential for producing various materials, fuels, and chemicals. With the rising demand for clean, sustainable energy sources, optimizing catalytic materials and processes becomes increasingly vital. In the realm of renewable energy production, catalysis is crucial for efficiently converting energy from sustainable resources, such as solar, wind, and biomass, into chemical energy stored in fuels or directly into electrical energy.The electronic charge distribution in materials significantly influences their physical and chemical properties, facilitating the development of advanced electronic, optoelectronic, sensing, and energy conversion devices. Since catalysis …