Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Physical Sciences and Mathematics

Three Body Interactions Of Rare Gas Solids Calculated Within The Einstein Model, Dan D'Andrea Dec 2016

Three Body Interactions Of Rare Gas Solids Calculated Within The Einstein Model, Dan D'Andrea

Masters Theses

Three body interactions can become important in solids at higher pressures and densities as the molecules can come into close contact. At low temperatures, accurate studies of three body interactions in solids require averaging the three-body terms over the molecules' zero point motions. An efficient, but approximate, averaging approach is based on a polynomial approximation of the three-body term. The polynomial approximation can be developed as a function of the symmetry coordinates of a triangle displaced from its average geometry and also as a function of the Cartesian zero point displacements from each atom’s average position. The polynomial approximation approach …


Synthesis And Characterization Of Novel Ligand For Use On Rhodium Paddlewheel Complexes, Gavin J. Rustin Dec 2016

Synthesis And Characterization Of Novel Ligand For Use On Rhodium Paddlewheel Complexes, Gavin J. Rustin

Masters Theses

Dirhodium (II) paddlewheel complexes have proven to be useful catalysts in many transformations including C-H insertions, cyclopropanation, and silane insertion reactions. One deficiency of these catalysts is the inability to modulate the enantioselectivity with reactive diazo compounds. One avenue for potential improvement of paddlewheel complexes is coordinating ligands in the axial site to increase enantioselectivity. The axial site has been occupied by various ligands including Nheterocyclic carbenes, nitrogen compounds, and phosphorous compounds. This work examines compounds that can be used as ligands on dirhodium complexes that have a pendant chain containing a dibenzyl phosphite and dibenzyl phosphate, both of which …


The Use Of Sodium Persulfate In Hydraulic Fracturing Fluids: A Degradation Study Based On Furfural, Katherine Elizabeth Manz Aug 2016

The Use Of Sodium Persulfate In Hydraulic Fracturing Fluids: A Degradation Study Based On Furfural, Katherine Elizabeth Manz

Masters Theses

Hydraulic fracturing has allowed natural gas to become a viable energy source via extraction of unconventional shale reserves, but this process requires an enormous amount of water. To ensure a productive fracture, a proprietary blend of chemical additives is added to the water. In this research, a hydraulic fracturing chemical additive – an enzyme breaking agent – is analyzed for organic components using gas chromatography mass spectrometry. The chemical changes that occur over the course of a fracture are also investigated using one model chemical found in the additive, furfural, in order to help assess the environmental risk that hydraulic …


Cd Transport In Eutectic Licl-Kcl And Contamination Of Zr Metal And Thermal Dehydration Of Bulk Licl-Kcl, Nicholas Azoy Earle May 2016

Cd Transport In Eutectic Licl-Kcl And Contamination Of Zr Metal And Thermal Dehydration Of Bulk Licl-Kcl, Nicholas Azoy Earle

Masters Theses

Researchers at Idaho National Labs have noted unexpectedly high Cd content in empty cladding hulls after processing in the Mark-IV ER. It has been theorized that Cd metal is transporting from the LCC pool through the eutectic LiCl-KCl salt bath to the anode baskets containing the empty hull where it is retained as a Zr-Cd intermetallic. This study sought to replicate the Cd contamination in a dry Ar glovebox using small-scale analogue of the Mark-IV ER salt-Cd metal system.

Anhydrous eutectic LiCl-KCl was an essential regent in this research and experiments were conducted to investigate the feasibility of dehydrating nominally …


Developing Synthetic Methods To Prepare Discrete Metal-Organic Nanotubes, Derek L. Mull May 2016

Developing Synthetic Methods To Prepare Discrete Metal-Organic Nanotubes, Derek L. Mull

Masters Theses

Metal-organic nanotubes (MONTs) are an emerging class of discrete materials that are the 1D variant of metal-organic frameworks (MOFs). MONTs have potential to become an alternative 1D material to carbon nanotubes, metal oxide nanotubes, and boron nitride nanotubes because they possess an organic ligand that can be functionalized and tuned for specific applications. Despite this potential, only a handful of structures have been reported and only two examples of discrete MONTs exist in the literature. It is thus imperative to develop general methods to prepare and characterize discrete MONTs to bring them to the forefront of the scientific literature.

Efforts …


Incorporating Carbon Nanotubes Into Carbon Fiber Via Surface Modification, Robert Benjamin Ripy May 2016

Incorporating Carbon Nanotubes Into Carbon Fiber Via Surface Modification, Robert Benjamin Ripy

Masters Theses

Ever more advanced materials need to be designed to further the exploration of avenues of science and engineering. Metals and traditional composites are not meeting the needs of today’s stringent demands for lightweight and strong materials. There is a need for advanced materials that are lighter and stronger to replace conventional materials; carbon fiber composites became the obvious choice because of their outstanding mechanical properties. Polyacrylonitrile (PAN) based carbon fiber has reached its apex in terms of its strength to weight ratio. Carbon nanotubes (CNTs) offer a lightweight and potentially stronger alternative to PAN based fibers. However, it is difficult …


Magnetron Sputtering And Corrosion Of Ti-Al-C And Cr-Al-C Coatings For Zr-Alloy Nuclear Fuel Cladding, Devin Alan Roberts May 2016

Magnetron Sputtering And Corrosion Of Ti-Al-C And Cr-Al-C Coatings For Zr-Alloy Nuclear Fuel Cladding, Devin Alan Roberts

Masters Theses

The disaster at the Fukushima Daiichi Nuclear Power Plant in March 2011 bought renewed focus to the issue of corrosion in nuclear fuel cladding applications. This thesis reports on the background behind these issues, the investigation strategy, and the analysis of experiments focused on mitigating oxidation of Zr-alloy fuel cladding. This thesis seeks to develop magnetron sputtered Ti-Al-C and Cr-Al-C coatings for Zr-alloy substrates and characterize the as-deposited and corroded samples.

Ti-Al-C and Cr-Al-C coatings were deposited onto ZIRLO, Si, and Al2O3 [Aluminum Oxide] substrates under various sputtering conditions. A combinatorial sputtering method was employed to refine …


Optical Sensors For The Analysis Of Alcohols In Fuels, Kendhl Kate Witt May 2016

Optical Sensors For The Analysis Of Alcohols In Fuels, Kendhl Kate Witt

Masters Theses

This thesis reports the development of optical sensors to analyze alcohols in fuel samples. One optical sensor enables the analysis of phenol in aviation fuels and cellulosic biofuels. It is critical to monitor the concentration of phenols in fuels because they increase the presence of solid oxidative deposits and lower the thermal stability of fuels. Preliminary studies of another optical sensor have been conducted to detect ethanol in E10 gasoline samples. Gasoline containing ethanol is widely available and used, but the exact percentage of ethanol is not specified and varies between samples and regions. Higher concentrations of ethanol in gasoline …