Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemistry

University of Mississippi

Honors Theses

Theses/Dissertations

Raman Spectroscopy

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Comparison Of The Vibrational Modes Of Thiolated Gold Nanoparticles Undergoing Core-Conversions Via Raman Spectroscopy, William Gregory Cannella Jr. May 2020

Comparison Of The Vibrational Modes Of Thiolated Gold Nanoparticles Undergoing Core-Conversions Via Raman Spectroscopy, William Gregory Cannella Jr.

Honors Theses

In this project, the vibrational characteristics/vibrational modes are explored via Raman Spectroscopy for thiolated-gold nanoparticles. This class of compounds is also known as gold nanoparticles (AuNPs). They remain of great interest in research areas such as catalysis, gold dependent nanoelectronics, drug delivery, and sensing, due to their unique size-dependent optical, chiroptical, and electronic properties. Vibrational spectroscopy of thiolated gold nanoparticles are oftentimes considered nontrivial as the compounds strongly absorb light in the visible region of the electromagnetic spectrum, are generally considered weak scatterers, and give off large amounts of fluorescence. This combined with their black appearance, susceptibility to localized heating, …


Raman Spectroscopic And Quantum Chemical Investigation Of The Effects Of Tri-Methylamine N-Oxide (Tmao) On Hydrated Urea, Hydrated Guanidinium, And Hydrogen Bonded Networks, Genevieve Verville May 2020

Raman Spectroscopic And Quantum Chemical Investigation Of The Effects Of Tri-Methylamine N-Oxide (Tmao) On Hydrated Urea, Hydrated Guanidinium, And Hydrogen Bonded Networks, Genevieve Verville

Honors Theses

Trimethylamine N-Oxide (TMAO), guanidinium, and urea are three important

osmolytes with their main significance to the biophysical field being in how they

uniquely interact with proteins. TMAO is known to stabilize and counteract the

destabilizing effects of both urea and guanidinium. The exact mechanisms by which

TMAO stabilizes and both guanidinium and urea destabilize folded proteins continue

to be debated in the literature. Some studies suggest that solvent interactions do not

play a large role in TMAO’s stabilizing effects and therefore advocate direct

stabilization, whereas others suggest that TMAO counteracts denaturation primarily

through an indirect effect of strong solvent interactions. …