Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemistry

University of Louisville

Theses/Dissertations

DFT

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Theoretical Investigation Of The Co-C Bond Activation In Methylcobalamin And Adenosylcobalamin-Dependent Systems: Mechanistic Insights., Arghya Pratim Ghosh Dec 2021

Theoretical Investigation Of The Co-C Bond Activation In Methylcobalamin And Adenosylcobalamin-Dependent Systems: Mechanistic Insights., Arghya Pratim Ghosh

Electronic Theses and Dissertations

The vitamin B12 derivates, otherwise known as cobalamin (Cbl), are ubiquitous organometallic cofactors. The biologically active forms of Cbl, such as methylcobalamin (MeCbl) and adenosylcobalamin (AdoCbl), act as cofactors in different physiological reactions for both prokaryotes and eukaryotes. A crucial aspect of the Cbl-mediated systems is the activation of the organometallic Co-C bond that plays a critical role in its catalytic activity. One of the most remarkable features of this Co-C bond is its unusual activation in AdoCbl-dependent enzymatic reactions, where a trillion-fold rate acceleration of the Co-C bond cleavage is observed inside the enzyme compared to the isolated …


Computational Modeling Of Photolysis And Catalysis Reactions In Vitamin B12-Dependent Enzymes., Abdullah Al Mamun May 2020

Computational Modeling Of Photolysis And Catalysis Reactions In Vitamin B12-Dependent Enzymes., Abdullah Al Mamun

Electronic Theses and Dissertations

Vitamin B12 is a complex organometallic molecule, the derivatives of which such as adenosylcobalamin (AdoCbl) and methylcobalamin (CH3Cbl) act as a cofactor in numerous enzymatic reactions. These two biologically active cofactors contain a unique organometallic Co-C σ bond. Important feature of this Co-C bond is that it can be activated by both thermally and photolytically inside the enzymatic environment as well as in the solution. In the case of enzymatic reactions where AdoCbl molecule act as a cofactor, the cleavage of the Co-C bond constitutes the key catalytic step. The most intriguing features of this cleavage is …


Computational Modeling Of Electronically Excited States In Cobalamin-Dependent Reactions., Brady D. Garabato May 2018

Computational Modeling Of Electronically Excited States In Cobalamin-Dependent Reactions., Brady D. Garabato

Electronic Theses and Dissertations

The current understanding of the photolytic properties of Vitamin B12 derivatives or cobalamins are summarized from a computational point of view. The focus is on two non-alkylcobalamins, cyanocobalamin (CNCbl) and hydroxocobalamin (HOCbl), two alkylcobalamins, methylcobalamin (MeCbl) and adenosylcobalamin (AdoCbl), as well as the stable cob(II)alamin radical. Photolysis of alkylcobalamins involves low-lying singlet excited states where photo-dissociation of the Co-C bond forms singlet-born alkyl/cob(II)alamin radical pairs (RPs). Potential energy surfaces (PESs) of low-lying excited states as functions of both axial bonds provide the most reliable tool for analysis of photochemical and photophysical properties. Due to the size limitations associated with the …


Homogeneous Ligand-Centered Hydrogen Evolution And Hydrogen Oxidation : Exploiting Redox Non-Innocence To Drive Catalysis., Andrew Z. Haddad May 2017

Homogeneous Ligand-Centered Hydrogen Evolution And Hydrogen Oxidation : Exploiting Redox Non-Innocence To Drive Catalysis., Andrew Z. Haddad

Electronic Theses and Dissertations

Hydrogen is a promising carbon-free fuel / energy carrier and is an essential building block for many industrial and agricultural processes. Rising energy demands have ignited interest in the development of carbon-free and carbon neutral energy sources. In this context, hydrogen is an attractive candidate—being energy-dense, carbon-free—and easily accessible through a two-electron reduction of water. Accordingly, many electrochemical homogeneous catalyst systems have been studied, with a focus on understanding the mechanism of hydrogen evolution proceeding through metal-hydride intermediates. However, there has been a renaissance in hydrogen evolution reaction (HER) catalyst design, with many groups implicating ligand redox non-innocence as a …