Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Physical Sciences and Mathematics

Green Chemistry Oxidative Modification Of Peptoids Utilizing Bleach And Tempo, Jesse Leland Roberts Dec 2017

Green Chemistry Oxidative Modification Of Peptoids Utilizing Bleach And Tempo, Jesse Leland Roberts

Graduate Theses and Dissertations

Biotherapeutic drugs, derived from biological molecules such as proteins and DNA, are becoming an integral and exceptionally critical aspect of modern medicine. Compared to common pharmaceutical drugs, biotherapeutics are much larger in size and have greater target specificity, allowing them to treat many chronic diseases ranging from cancer to rheumatoid arthritis. The major issue with protein based therapeutics is that they readily undergo proteolysis, or enzymatic degradation, when administered through subcutaneous injections. Traditionally, biotherapeutic modification procedures have centered on the use of PEG derivatives. This process, called PEGylation, is unfavorable due to the increases in molecular weights of the proteins …


The Functionalization Of N-Cyclobutylanilines Under Photoredox Catalysis, Jiang Wang Aug 2017

The Functionalization Of N-Cyclobutylanilines Under Photoredox Catalysis, Jiang Wang

Graduate Theses and Dissertations

While transition metal catalyzed cross coupling reactions have become one of the most useful strategies in constructing carbon-carbon and carbon-heteroatom bond formations, major disadvantages such as high reaction temperature, expansive metal catalysts input and limited reaction substrates scope have significantly downshifted the applications of those two electron involved transformations. Comparably, the studies on the redox coupling reactions are less investigated. Derived from single electron transfer process, the redox coupling reactions can be used to construct otherwise challenging chemical bonds efficiently, such as Csp3-Csp3 bond. Recently, visible light mediated photoredox catalysis has merged as a highly prominent tool in the development …


Instrumental Aspects Of Oxygen Sensing: Quantitation And Recalibration Of A Biofouled Oxygen Sensor, Marlena Patrick Aug 2017

Instrumental Aspects Of Oxygen Sensing: Quantitation And Recalibration Of A Biofouled Oxygen Sensor, Marlena Patrick

Graduate Theses and Dissertations

In vivo oxygen sensing is a critical area of research for medical applications, such as ischemic stroke, but this important topic is not fully understood or resolved. In addition, the best method for calibration of in vivo sensors is as yet undetermined. For all implantable devices, biofouling, the adsorption of biological material to the device surface, is another significant problem with no clear or well-defined solution. One method employed is to apply a protective polymer membrane to the sensor surface in order to minimize the adsorption of biological material. The work described here investigates two polymers applied to a gold …


The “Apparent” Diffusion Coefficient Of Electrons Through A Nafion Membrane, Marissa Kayle Reynolds May 2017

The “Apparent” Diffusion Coefficient Of Electrons Through A Nafion Membrane, Marissa Kayle Reynolds

Graduate Theses and Dissertations

The hydrogen/oxygen fuel cell is a greener, more efficient energy solution. However, there are many problems with the fuel cell including storage, infrastructure, cost, the oxygen reduction reaction, and the durability of the proton exchange membrane (PEM). The PEM is not only used as the electrolyte for the cell but also as a physical barrier between the anode and the cathode. The integrity of this membrane is crucial to the functioning of the fuel cell. This thesis will examine using ferricyanide as a probe molecule for diagnostic experiment of Nafion membrane integrity. Using hydrodynamic voltammetry with a rotating disk electrode …


Morphology Controlled Synthesis Of Copper Based Multimetallic Nanostructures And Their Electrocatalytic Properties For Methanol Oxidation Reaction, Leanne Elizabeth Mathurin May 2017

Morphology Controlled Synthesis Of Copper Based Multimetallic Nanostructures And Their Electrocatalytic Properties For Methanol Oxidation Reaction, Leanne Elizabeth Mathurin

Graduate Theses and Dissertations

This research focuses on the development of shape-controlled synthesis of Cu NM, Cu-based bimetallic and trimetallic nanostructures, and their electrocatalytic properties for methanol oxidation reaction (MOR). Copper nanomaterials (Cu NM) with specific surface facets can tailor their catalytic activity. Understanding reagents responsible for Cu NM growth is important for morphology-controlled synthesis of the nanostructures. This research studies the halide influence on Cu NM growth and morphology in an oil-based synthesis. The morphology of the Cu NM varies with the halide type (i.e., Cl-, Br-, I-), and the halide concentration. Additionally, the type of Cu precursor also influenced the morphology of …


Electrochemical Time Of Flight For Rapid And Direct Measurement Of Diffusion Coefficients, Jonathan C. Moldenhauer May 2017

Electrochemical Time Of Flight For Rapid And Direct Measurement Of Diffusion Coefficients, Jonathan C. Moldenhauer

Graduate Theses and Dissertations

The determination of diffusion coefficients is of fundamental importance to the understanding of electrochemistry and sensors. Developing a method by which diffusion coefficients of Red/ox active analytes can be determined quickly and elegantly, would be a great advancement over presently accepted methods. This dissertation reports the reviving electrochemical time of flight (ETOF), and developing a method that allows for empirical determination of diffusion coefficients from a single measurement. ETOF is a generate and detect experiment where the time an electrochemically generated species takes to transit a known distance is measured and related to the diffusion coefficient of the species. The …


Controlled Synthesis And Utilization Of Metal And Oxide Hybrid Nanoparticles, Cameron Cowgur Crane May 2017

Controlled Synthesis And Utilization Of Metal And Oxide Hybrid Nanoparticles, Cameron Cowgur Crane

Graduate Theses and Dissertations

This dissertation reports the development of synthetic methods concerning rationally-designed, hybrid, and multifunctional nanomaterials. These methods are based on a wet chemical, solution phase approach that utilizes the knowledge of synthetic organic and inorganic chemistry to generate building blocks in solution for the growth of nanocrystals and hybrid nanostructures. This work builds on the prior knowledge of shape-controlled synthesis of noble metal nanocrystals and expands into the challenging realm of the more reactive first row transition metals. Specifically, a microemulsion sol-gel method was developed to synthesize Au-SiO2 dimers as precursors for the synthesis of segmented heterostructures of noble metals that …


Influence Of Histidine Residues, Ph And Charge Interactions On Membrane-Spanning Peptides, Ashley N. Henderson May 2017

Influence Of Histidine Residues, Ph And Charge Interactions On Membrane-Spanning Peptides, Ashley N. Henderson

Graduate Theses and Dissertations

Designed transmembrane peptides were employed for investigations of histidine residues within the hydrophobic environment of the lipid bilayer by means of oriented solid-state deuterium NMR spectroscopy. Using the model peptide GWALP23 sequence (GGALW(LA)6LWLAGA) as a host framework, the effects of single and double histidine mutations were explored. Replacement of leucine residue 12 to polar neutral histidine had little influence on the peptide average orientation, however under strongly acidic pH conditions in DOPC bilayers, the histidine becomes positively charged (pKa 2.5) and the GWALP23-H12 peptide exits the membrane and adopts a surface-bound orientation. Conversely, mutation of leucine 14 to neutral histidine …


Exploring Thermoresponsive Affinity Agents To Enhance Microdialysis Sampling Efficiency Of Proteins, Thaddeus Vasicek May 2017

Exploring Thermoresponsive Affinity Agents To Enhance Microdialysis Sampling Efficiency Of Proteins, Thaddeus Vasicek

Graduate Theses and Dissertations

Affinity agents increase microdialysis protein relative recovery, yet they have not seen widespread use within the microdialysis community due to their additional instrumentation requirements and prohibitive cost. This dissertation describes new affinity agents for microdialysis that require no additional instrumentation to use, have nearly 100% particle recovery, are 7 times more cost efficient than alternatives, and have low specificity enabling their use for a wide variety of proteins. Initially gold nanoparticles were chosen as an affinity ligand support due to their high surface area/volume ratio and colloidal stability. Poly (N-isopropylacrylamide) was immobilized to the gold nanoparticles, which served to sterically …


Enzyme Kinetics Studies To Guide Mathematical Modeling Of Microdialysis Sampling To Predict In Situ Biochemistry, Justin M. Klucher May 2017

Enzyme Kinetics Studies To Guide Mathematical Modeling Of Microdialysis Sampling To Predict In Situ Biochemistry, Justin M. Klucher

Chemistry & Biochemistry Undergraduate Honors Theses

Microdialysis is a diffusion-based sampling method that can be useful for monitoring various biological systems. Matrix metalloproteinases are a class of enzymes responsible for remodeling the extracellular matrix that, when dysregulated, are linked to various diseases. The delivery method of microdialysis is of particular interest as a sampling technique for enzymatic reactions. Microdialysis was performed in vitro using a model enzyme, porcine pancreatic elastase, because it is a useful substitute for matrix metalloproteinases. A colorimetric substrate for elastase, succinyl-ala-ala-ala-p-nitroanilide, and its product p-nitroaniline were measured using a UV-Vis spectrophotometer. Using an expanded Beer’s Law equation, both analytes’ concentrations were determined …


An Electrochemical Characterization Of A Vanadium-Based Deoxydehydration Catalyst, Joel Eric Baker May 2017

An Electrochemical Characterization Of A Vanadium-Based Deoxydehydration Catalyst, Joel Eric Baker

Graduate Theses and Dissertations

Alternative methods for the conversion of polyols into olefins, be it for carbon storage or hydrocarbon fuel production, have become prevalent in today’s chemical industry. One process in particular, deoxydehydration (DODH) has been proven effective in taking sustainable biomass derivatives and converting them through the utilization of various homogenous metal catalysts. While this process may show productive yields and material conversion, it is hindered by the need of a sacrificial reductant. This makes a novel process economically unviable and relatively unused outside of scientific research. That fact begs the question: Can the process be improved? It is proposed here that …