Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemistry

University of Arkansas, Fayetteville

Graduate Theses and Dissertations

Theses/Dissertations

Neurotransmitters

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Microfabrication And Electrochemical Characterization Of A Novel Su-8 Probe With An Array Of Individually Addressable Electrodes Suitable For Redox Cycling Experiments In Ultra-Small Volumes, Mahsa Lotfi Marchoubeh Jul 2021

Microfabrication And Electrochemical Characterization Of A Novel Su-8 Probe With An Array Of Individually Addressable Electrodes Suitable For Redox Cycling Experiments In Ultra-Small Volumes, Mahsa Lotfi Marchoubeh

Graduate Theses and Dissertations

Redox cycling is an electrochemical technique that utilizes closely spaced generator and collector electrodes to cycle reversible redox species between their oxidative states. With advantages in signal amplification, selectivity of species based on their electrochemical reaction mechanism, and limited or no background subtraction, this technique is well suited for selective detection of important electrochemically active molecules such as dopamine at basal or slowly changing levels.

Miniaturized medical devices have become an area of great interest for measurement of chemicals in limited volumes with low concentrations or in sensitive tissues. A probe on a polymeric SU-8 substrate with suitable dimensions and …


Development Of Electrochemical Sensors Suitable For In Vivo Detection For Neurotransmitters, Mengjia Hu May 2016

Development Of Electrochemical Sensors Suitable For In Vivo Detection For Neurotransmitters, Mengjia Hu

Graduate Theses and Dissertations

The electrochemical method of redox cycling was exploited to achieve new discoveries in neurotransmitter detection and to advance its suitability toward in vivo use. Redox cycling has advantages in signal amplification, selectivity of species based on their electrochemical reaction mechanisms, and limited or no background subtraction. Distinction of dopamine from norepinephrine in a mixture with an electrochemical method at unmodified electrodes was demonstrated for the first time in vitro. This ability resulted from a series of fundamental studies of redox cycling behavior of the catecholamines (dopamine, norepinephrine and epinephrine) using different electrode configurations. Taking advantage of the ECC’ mechanism associated …