Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Physical Sciences and Mathematics

A Library Of Low Molecular Weight Fluorescent Probes For The Detection Of Cu(Ii) And Fe(Iii) Ions, Ashley Johnson Dec 2020

A Library Of Low Molecular Weight Fluorescent Probes For The Detection Of Cu(Ii) And Fe(Iii) Ions, Ashley Johnson

Dissertations

This dissertation reports the synthesis and photophysical properties of a family of rhodamine dyes (compounds 3.9-3.13 and 4.6). The rhodamine dyes are prepared in two steps, and fully characterized by ESI-MS (Low and High resolution), X-Ray crystallography, NMR spectroscopy, and FT-IR spectroscopy. The coordination environment of the low molecular weight fluorescent probes (LMFPs) was systematically changed to investigate the thermodynamic behavior between the LMFPs and an array of metal ions (Cu2+, Fe2+, and Hg2+ ions) in protic and aprotic solvent systems. Upon coordinating to metal ions, the π-conjugation of the LMFPs changed, resulting in …


Practical Adhesion Measurements In Organic Coatings; Advancing Understanding And Mechanical Methods Development, Diana Gottschalk Dec 2020

Practical Adhesion Measurements In Organic Coatings; Advancing Understanding And Mechanical Methods Development, Diana Gottschalk

Dissertations

“Adhesion” can be considered either a mechanical or chemical phenomenon. The mechanical interpretation describes the difficulty of separating surfaces and is useful for quantifying performance within applications that depend on bulk and interfacial properties. Chemical adhesion describes interfacial resistance to chemical attack and does not depend on bulk properties. Predicting chemical failure through mechanical measurement is confounded by the influence of bulk properties. However, the prospect is attractive because of the robust tolerance for sample geometries, allowing experiments to resemble an end-use system. The present work's primary goal was to elevate mechanical methods to provide a detailed interfacial characterization of …


Synthesis Of Alpha-Methylselenocysteine, Its Relevant Analogues, And An Unnatural Glutathione Disulfide Core, Robert J. Wehrle Aug 2020

Synthesis Of Alpha-Methylselenocysteine, Its Relevant Analogues, And An Unnatural Glutathione Disulfide Core, Robert J. Wehrle

Dissertations

Selenoproteins, such as glutathione peroxidase, have gained interest for their ability to act as antioxidants, and their potential to act as anti-cancer agents. Synthesizing and studying selenoproteins can be problematic, however, due to their propensity to degrade from over-oxidation. The degradation from over-oxidation can be avoided by the incorporation of the unnatural amino acid, alpha-methylselenocysteine. A synthesis utilizing methyl malonic esters was used to synthesize protected (R)-alpha-methylselenocysteine efficiently (46% over four steps) and in high enantio-purity (88% enantiomeric excess). Using similar procedures, the (S)-enantiomer was also synthesized as well as a beta-analogue.

The use of enzymes …


Machine Learning Approaches For Improving Prediction Performance Of Structure-Activity Relationship Models, Gabriel Idakwo Aug 2020

Machine Learning Approaches For Improving Prediction Performance Of Structure-Activity Relationship Models, Gabriel Idakwo

Dissertations

In silico bioactivity prediction studies are designed to complement in vivo and in vitro efforts to assess the activity and properties of small molecules. In silico methods such as Quantitative Structure-Activity/Property Relationship (QSAR) are used to correlate the structure of a molecule to its biological property in drug design and toxicological studies. In this body of work, I started with two in-depth reviews into the application of machine learning based approaches and feature reduction methods to QSAR, and then investigated solutions to three common challenges faced in machine learning based QSAR studies.

First, to improve the prediction accuracy of learning …


Freshwater Endmembers Impacting Carbonate Chemistry In The Mississippi Sound, Allison Savoie Aug 2020

Freshwater Endmembers Impacting Carbonate Chemistry In The Mississippi Sound, Allison Savoie

Master's Theses

Coastal ecosystems are highly dynamic areas for carbon cycling and are likely to be negatively impacted by increasing ocean acidification. This research focused on dissolved inorganic carbon (DIC) and total alkalinity (TA) in the Mississippi Sound in order to understand the influence of local rivers that supply alkalinity to the area and buffer against ocean acidification. This area receives large fluxes of freshwater from local rivers, in addition to episodic inputs from the Mississippi River through a human-built diversion, the Bonnet Carré Spillway. Sites in the Mississippi Sound were sampled monthly during August 2018 to November 2019 and at weekly …


Investigation On The Morphology Of Charge-Transfer Complexes In Low Density Polyethylene, Wade Korf May 2020

Investigation On The Morphology Of Charge-Transfer Complexes In Low Density Polyethylene, Wade Korf

Master's Theses

Fillers are used ubiquitously throughout the fields of polymer and material science to overcome many inherent limitations to polymeric materials (i.e. poor stiffness or strength) and to expand their potential applications. There is a need to develop controllable particle architectures to better understand fundamental structure-property relationships in particle reinforced polymer composites. Charge-transfer complexes (CTCs) can assemble in situ into various needle and dendritic shapes via simple fabrication processes and at low loading levels. In this study, the effect of tetrathiafulvalene (TTF) and 7,7,8,8-tetracyanoquinodimethane (TCNQ) CTC crystallites of various shapes and sizes on composite mechanical properties was investigated in an LDPE …


Thiol-Ene Click Chemistry For Solid State Triplet-Triplet Annihilation Upconversion And Parts-Per-Billion Pyrophosphate Sensing In Artificial Seawater, Abagail K. Williams May 2020

Thiol-Ene Click Chemistry For Solid State Triplet-Triplet Annihilation Upconversion And Parts-Per-Billion Pyrophosphate Sensing In Artificial Seawater, Abagail K. Williams

Master's Theses

Thiol-ene click chemistry is a robust approach to molecularly engineering polymers for many applications. Within this work, thiol-ene click chemistry is used to fabricate thiol-ene networks for TTA-UC and to synthesize a conjugated polyelectrolyte (CPE) used as a pyrophosphate (PPi) sensor in complex aqueous media. Chapter I focuses on the synthesis and upconversion performance of rubbery networks fabricated using thiol-ene click photopolymerization. The advancement of triplet-triplet annihilation based upconversion (TTA-UC) in emerging technologies necessitates the development of solid-state systems that are readily accessible and broadly applicable. We demonstrate that thiol-ene click chemistry can be used as a facile cure-on-demand synthetic …


Discriminating Azo Dyes: Conjugated Polymers, The Inner Filter Effect, And Array Sensors, Erin Crater May 2020

Discriminating Azo Dyes: Conjugated Polymers, The Inner Filter Effect, And Array Sensors, Erin Crater

Honors Theses

Azo dyes are abundant pollutants that contaminate water supplies and threaten humans, biota, and ecosystem health. Their detection and discrimination are an incredible challenge due to the structural, chemical, and optical similarities between dyes, the complexity of the wastewater environment in which they are found, and their low environmental concentrations. In this work, the inner filter effect (IFE), combined with conjugated polymer array-based sensing, is utilized for the quantitative profiling of these pollutants. The array was constructed using three fluorescent, anionic conjugated polyelectrolytes whose varying spectroscopic properties led to distinct IFE patterns in the presence of the dyes. The unique …


An Atomistic Study Of The Effects On Mechanical Properties And Bonding Interactions Of Carbon Nanofillers In Nylon 6 Nanocomposites, Michael Roth May 2020

An Atomistic Study Of The Effects On Mechanical Properties And Bonding Interactions Of Carbon Nanofillers In Nylon 6 Nanocomposites, Michael Roth

Dissertations

Polymers have potential for a wide range of applications. The effectiveness of polymers can be further enhanced through the addition of nanofillers that improve thermal, mechanical, and electrical properties of the polymer. Carbon based nanofillers such as carbon nanotube (CNT), graphene, and carbon nanofibre (CNF) are of particular interest due to their high properties and high aspect ratios. However, limited understanding of the governing interactions of these nanofillers with polymers limits the effectiveness of the final nanocomposite.

The first facet of this dissertation focuses on determining the dominating interactions between pristine CNT and graphene with nylon 6 monomer and the …


Effect Of Selfsame Microparticles On Epoxide Amine Network Formation And Matrix Mechanics, Travis Palmer May 2020

Effect Of Selfsame Microparticles On Epoxide Amine Network Formation And Matrix Mechanics, Travis Palmer

Dissertations

Epoxide amine matrices are widely utilized in aerospace carbon fiber reinforced polymer (CFRP) composites having engendered significant reductions in weight and fuel consumption. This dissertation focuses on the effect of constrained space during network formation on the matrix mechanics of these highly complex composite systems. Precipitation polymerization conditions are developed to prepare epoxide amine microparticles (EMs) based on tetraglycidyl-4,4’-methylenedianiline (TGDDM) and isophorone diamine (IPDA). Surface functionality of EMs is tuned via control of epoxide to reactive amine hydrogen ratio, where unreactive, amine- and epoxide-functional EMs are prepared. We demonstrate that EMs are polydisperse, but can be filtered, yielding low dispersity …


Huisgen 1,3-Dipolar Azide-Alkyne Cycloaddition “Click” Reaction In Polymer Synthesis And Curing, Jie Wu May 2020

Huisgen 1,3-Dipolar Azide-Alkyne Cycloaddition “Click” Reaction In Polymer Synthesis And Curing, Jie Wu

Dissertations

This dissertation’s key focus is on utilizing Huisgen 1,3-dipolar azide-alkyne cycloaddition (AAC) reaction in copolymer synthesis and modification, including thermoplastic block copolymer and commercially available two-component polyurethane system. It can be divided into two major projects, introduced as follows.

The first project involves the development of a modular synthetic approach toward polyisobutylene (PIB)-based triphasic pentablock thermoplastic elastomer with enhanced moisture permeability. This terpolymer consists of a poly(styrene-b-isobutylene-b-styrene) (SIBS) core and appended hydrophilic polymer blocks (HBs). The SIBS core was synthesized via living cationic polymerization (LCP) of isobutylene followed by sequential addition of styrene. AAC was utilized …


Geochemical Tracers Of Arctic Ocean Processes: A Study Of Gallium, Barium, And Vanadium, Laura M. Whitmore May 2020

Geochemical Tracers Of Arctic Ocean Processes: A Study Of Gallium, Barium, And Vanadium, Laura M. Whitmore

Dissertations

The Arctic Ocean is linked to the global oceans and climate through its connectivity with the North Atlantic Ocean and the regional thermohaline deep water formation sites. It’s also a region undergoing rapid environmental change. To inform the community of potential changes in geochemical and biogeochemical cycles, this dissertation addresses three dissolved geochemical tracers (gallium, barium, and vanadium) as indicators of Arctic Ocean processes. Gallium is tested as a replacement for nutrient-type tracers in an effort to deconvolve Pacific and Atlantic derived waters in the Arctic Ocean basins. These water masses carry different heat and salt content and can influence …