Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemistry

Selected Works

Selected Works

2015

Zinc

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Identification Of A Histidine Metal Ligand In The Arge-Encoded N-Acetyl-L-Ornithine Deacetylase From Escherichia Coli, Wade C. Mcgregor, Danuta Gillner, Sabina I. Swierczek, Dali Liu, Richard C. Holz Mar 2015

Identification Of A Histidine Metal Ligand In The Arge-Encoded N-Acetyl-L-Ornithine Deacetylase From Escherichia Coli, Wade C. Mcgregor, Danuta Gillner, Sabina I. Swierczek, Dali Liu, Richard C. Holz

Richard C. Holz

The H355A, H355K, H80A, and H80K mutant enzymes of the argE-encoded N-acetyl-L-ornithine deacetylase (ArgE) from Escherichia coli were prepared, however, only the H355A enzyme was found to be soluble. Kinetic analysis of the Co(II)-loaded H355A exhibited activity levels that were 380-fold less than Co(II)-loaded WT ArgE. Electronic absorption spectra of Co(II)-loaded H355A-ArgE indicate that the bound Co(II) ion resides in a distorted, five-coordinate environment and Isothermal Titration Calorimetry (ITC) data for Zn(II) binding to the H355A enzyme provided a dissociation constant (Kd) of 39 μM. A three-dimensional homology model of ArgE was generated using the X-ray crystal structure of the …


The Aminopeptidase From Aeromonas Proteolytica Can Function As An Esterase, David Bienvenue, Rebecca Matthew, Dagmar Ringe, Richard Holz Mar 2015

The Aminopeptidase From Aeromonas Proteolytica Can Function As An Esterase, David Bienvenue, Rebecca Matthew, Dagmar Ringe, Richard Holz

Richard C. Holz

The aminopeptidase from Aeromonas proteolytica (AAP) can catalyze the hydrolysis of L-leucine ethyl ester (L-Leu-OEt) with a rate of 96±5 s–1 and a K m of 700 µM. The observed turnover number for L-Leu-OEt hydrolysis by AAP is similar to that observed for peptide hydrolysis, which is 67±5 s–1. The k cat values for the hydrolysis of L-Leu-OEt and L-leucine-p-nitroanilide (L-pNA) catalyzed by AAP were determined at different pH values under saturating substrate concentrations. Construction of an Arrhenius plot from the temperature dependence of AAP-catalyzed ester hydrolysis indicates that the rate-limiting step does not change as a function of temperature …


Kinetic And Spectroscopic Characterization Of The E134a- And E134d-Altered Dape-Encoded N-Succinyl-L,L-Diaminopimelic Acid Desuccinylase From Haemophilus Influenzae, Ryan Davis, David Bienvenue, Sabina Swierczek, Danuta Gilner, Lakshman Rajagopal, Brian Bennett, Richard Holz Mar 2015

Kinetic And Spectroscopic Characterization Of The E134a- And E134d-Altered Dape-Encoded N-Succinyl-L,L-Diaminopimelic Acid Desuccinylase From Haemophilus Influenzae, Ryan Davis, David Bienvenue, Sabina Swierczek, Danuta Gilner, Lakshman Rajagopal, Brian Bennett, Richard Holz

Richard C. Holz

Glutamate-134 (E134) is proposed to act as the general acid/base during the hydrolysis reaction catalyzed by the dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE) from Haemophilus influenzae. To date, no direct evidence has been reported for the role of E134 during catalytic turnover by DapE. In order to elucidate the catalytic role of E134, altered DapE enzymes were prepared in which E134 was substituted with an alanine and an aspartate residue. The Michaelis constant (K m) does not change upon substitution with aspartate but the rate of the reaction changes drastically in the following order: glutamate (100% activity), aspartate (0.09%), and alanine …


The 1.20 Å Resolution Crystal Structure Of The Aminopeptidase From Aeromonas Proteolytica Complexed With Tris: A Tale Of Buffer Inhibition, William Desmarais, David Bienvenue, Krzysztof Bzymek, Richard Holz, Gregory Petsko, Dagmar Ringe Mar 2015

The 1.20 Å Resolution Crystal Structure Of The Aminopeptidase From Aeromonas Proteolytica Complexed With Tris: A Tale Of Buffer Inhibition, William Desmarais, David Bienvenue, Krzysztof Bzymek, Richard Holz, Gregory Petsko, Dagmar Ringe

Richard C. Holz

The aminopeptidase from Aeromonas proteolytica (AAP) is a bridged bimetallic enzyme that removes the N-terminal amino acid from a peptide chain. To fully understand the metal roles in the reaction pathway of AAP we have solved the 1.20 Å resolution crystal structure of native AAP (PDB ID = 1LOK). The high-quality electron density maps showed a single Tris molecule chelated to the active site Zn2+, alternate side chain conformations for some side chains, a sodium ion that mediates a crystal contact, a surface thiocyanate ion, and several potential hydrogen atoms. In addition, the high precision of the atomic …