Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Development Of Flexible Batteries Using Nano-Carbons And Polymers, Zhiqian Wang May 2015

Development Of Flexible Batteries Using Nano-Carbons And Polymers, Zhiqian Wang

Dissertations

Flexible electronics such as wearable equipment, displays, cell phones and smart cards require flexible power sources like batteries. In this thesis, the development of flexible batteries and supercapacitors are presented. Different types of flexible batteries including zinc carbon batteries, primary alkaline batteries, secondary alkaline batteries and zinc air cells are presented, These were designed, fabricated and improved using polymers and nano-carbons like carbon nanotubes (CNTs). CNTs are found to be effective as conductive additives compared to the traditional graphite. Purification is important to remove impurities that lead to side reactions/ corrosions. However, further treatment like carboxylation lead to higher electric …


Synthetic Approaches To The Understanding Of Dna Nucleobase Methylation, Jagruti Rana Jan 2015

Synthetic Approaches To The Understanding Of Dna Nucleobase Methylation, Jagruti Rana

Dissertations

DNA methylation is a major source of genetic variation and cancer. Methylation occurs when nucleophilic DNA bases react with methylating agent methyl methanesulfonate (MMS), dimethyl sulfate (DMS), N-methyl-N-nitrosourea (MNU), N-methyl-N-nitro-N-nitrosoguanidine (MNNG), etc. N7-methyl-2'-deoxyguanosine (N7-methyl-dG, or 7MedG) adduct is the most abundant DNA methylation products for most methylating agents. DNA polymerase actions on 7MedG are difficult to study due to its instability against ring- opening hydrolysis and deglycosyl ati on. Oligonucleotides containing a single chemical adduct of 7MedG cannot be chemically synthesized. In addition, 7MedG is unstable in vivo …