Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemistry

Clemson University

Chromatography

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Capillary-Channeled Polymer Fibers As Stationary Phases For Protein Chromatography, Marissa Pierson Dec 2015

Capillary-Channeled Polymer Fibers As Stationary Phases For Protein Chromatography, Marissa Pierson

All Theses

Capillary-channeled polymer (C-CP) fibers have been studied in this laboratory as stationary phases for protein separations in high-performance liquid chromatography (HPLC). C-CP fibers are uniquely shaped so as to include eight continuous capillary-channels which interdigitate once packed into a column. The packed column resembles a monolithic structure of unobstructed flow through capillary channels which reduces backpressure and increases linear velocity, reducing separation time. Fibers are effectively nonporous with respect to macromolecules, resulting in fast mass transfer and high sample recovery. C-CP fibers made from polypropylene (PP) yield a fairly homogenous hydrophobic surface suitable for reversed phase (RP) chromatography. In a …


Determination Of Pore Size Distribution In Capillary-Channeled Polymer (C-Cp) Fiber Stationary Phases By Inverse Size-Exclusion Chromatography (Isec) And The Study Of The Role Of Interstitial Fraction On C-Cp Fibers On Protein Binding Capacity, Zhengxin Wang May 2014

Determination Of Pore Size Distribution In Capillary-Channeled Polymer (C-Cp) Fiber Stationary Phases By Inverse Size-Exclusion Chromatography (Isec) And The Study Of The Role Of Interstitial Fraction On C-Cp Fibers On Protein Binding Capacity, Zhengxin Wang

All Theses

ABSTRACT High performance liquid chromatography (HPLC), first used in the 1960's, is a rapidly evolving analytical technique, widely employed for identification, separation, and purification in biotechnology and pharmaceutical industries. The development of the stationary phases has played an important role in improving this technique. Each stationary phase will have its own disadvantages. Polysaccharide-based stationary phases such as cross-linked dextran cannot tolerate high pressures and linear velocities; silica stationary phases are rigid enough but slow mass transfer in the pores on the surface causes another problem; with the introduction of non-porous and small bead packing materials, the low surface area and …