Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Evaluating Contaminants Of Emerging Concern In Commercial Biosolid-Based Fertilizers, John Hemmerling, Michael L. Mashtare, Linda S. Lee Aug 2014

Evaluating Contaminants Of Emerging Concern In Commercial Biosolid-Based Fertilizers, John Hemmerling, Michael L. Mashtare, Linda S. Lee

The Summer Undergraduate Research Fellowship (SURF) Symposium

The production and popularity of commercially available biosolid-based fertilizers are increasing because of their economic, environmental, and plant nutrition benefits, particularly in urban and suburban areas. Because biosolid-based fertilizers are derived from waste water treatment plant residuals, we hypothesized that there is the potential for micropollutants to persist in these products. Their presence would be of particular concern due to their potential impact on human and ecological health and risk of bioaccumulation. This study involves quantifying contaminants of emerging concern in three biosolid-based fertilizers, and 2 non-biosolid-based fertilizers, a composted animal manure and an organic compost. Our extraction method employed …


Soil And Biosolid Nano- And Macro-Colloid Properties And Contaminant Transport Behavior, Jessique L. Ghezzi Jan 2014

Soil And Biosolid Nano- And Macro-Colloid Properties And Contaminant Transport Behavior, Jessique L. Ghezzi

Theses and Dissertations--Plant and Soil Sciences

Despite indications that they are potential contaminant transport systems and threats to groundwater quality, very little effort has been invested in comparing contaminant transport behavior of natural environmental nanocolloids and their corresponding macrocolloid fractions in the presence of As, Se, Pb, and Cu contaminants. This study involved physico-chemical, mineralogical, stability and contaminant-transport characterizations of nano- (< 100 nm) and macro-colloids (100-2000 nm) fractionated from three Kentucky soils and one biosolid waste. Particle size was investigated with SEM/TEM and dynamic light scattering. Surface reactivity was estimated using CEC and zeta potential. Mineralogical composition was determined by XRD, FTIR, and thermogravimetric analyses. Sorption isotherms assessed affinities for Cu2+, Pb2+, AsO3-, and SeO4-2 contaminants, while settling kinetics experiments of suspensions at 0, 2 and 10 mg/L contaminants determined stability and transportability potential. Undisturbed 18x30 cm KY Ashton Loam soil monoliths were also used for …