Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemistry

PDF

Theses/Dissertations

Characterization

Institution
Publication Year
Publication

Articles 1 - 30 of 40

Full-Text Articles in Physical Sciences and Mathematics

Towards Carbon Dioxide Reduction: Synthesis And Characterization Of Ccc-Nhc Pincer Iron Complexes., Joshua Mensah May 2024

Towards Carbon Dioxide Reduction: Synthesis And Characterization Of Ccc-Nhc Pincer Iron Complexes., Joshua Mensah

Theses and Dissertations

The industrial revolution came with its downside of emission of greenhouse gases into the atmosphere. The NOAA reported in 2019 that, of the greenhouse gases emitted into the atmosphere, CO2 contributed to about 80% of the increased greenhouse gases hence the need for CO2 Sequestering and Storage (CSS) and ultimately leading to Carbon Capture and Recycling (CCR) as a viable option to convert CO2 into useful forms. The race to find the best catalyst for CCR has led to the synthesis of many organometallic compounds. Pincer complexes catalyzed CO2 reduction has gained notoriety recently because of the tunability and robustness …


Exposure Of Candyland Red Tomatoes (¬Solanum Lycopersicum L.) To Various Metal Oxide Nanomaterials: Full Life Cycle And Assessment Of Fruit Quality, Jesus Manuel Cantu Aug 2022

Exposure Of Candyland Red Tomatoes (¬Solanum Lycopersicum L.) To Various Metal Oxide Nanomaterials: Full Life Cycle And Assessment Of Fruit Quality, Jesus Manuel Cantu

Open Access Theses & Dissertations

The use of nanotechnology in agriculture has attained high interest to enhance crop production due to their unique properties. Moreover, metal oxide nanomaterials can potentially supplement nutrients, enhance plant growth, and crop production. When investigating fruits' nutritional quality, carbohydrates and phytonutrients (bioactive compounds) play important roles. Therefore, it is important to understand how nanomaterials will affect the quality of tomato fruits. In this dissertation, various metal oxides were synthesized and applied to Candyland Red tomato seedlings to assess the plant growth and tomato production. In the first investigation, Candyland Red tomatoes (Solanum lycopersicum) were exposed to synthesized pristine CuO and …


Isolation And Characterization Of Extracellular Vesicles From Various Biological Matrices Using Capillary-Channeled Polymer (C-Cp) Fiber Solid-Phase Extraction Spin-Down Tips, Kaylan Jackson Aug 2022

Isolation And Characterization Of Extracellular Vesicles From Various Biological Matrices Using Capillary-Channeled Polymer (C-Cp) Fiber Solid-Phase Extraction Spin-Down Tips, Kaylan Jackson

All Dissertations

A number of recent works have emphasized the need to isolate nanometer-scale analytes, like extracellular vesicles (EVs), from various biologically-relevant fluids. Exosomes are a subset of small EVs that range from 30-200 nm in diameter that serve as biomolecular snapshots of their cell of origin containing mother cell-specific DNA, miRNA, mRNA, and proteins. As critical components of intercellular communication, exosomes and other EVs play significant roles in many physiological and pathological processes. Diverse populations of these vesicles can be collected from biofluids, including blood, saliva, and urine, from cell culture conditioned media and primary cells, and even from plant …


The Dissolution And Recovery Of Critical Materials (Li2co3 And Uf6) From Ionic Liquid, Cassara Higgins May 2022

The Dissolution And Recovery Of Critical Materials (Li2co3 And Uf6) From Ionic Liquid, Cassara Higgins

UNLV Theses, Dissertations, Professional Papers, and Capstones

Lithium and uranium are critical materials in both the energy industry and for national security. Lithium is necessary for the next generation of batteries and 6Li is valuable for the production of tritium necessary for both fusion energy and to maintain our nuclear stockpiles. Uranium is a fuel source or precursor fuel source for commercially operating nuclear fission power. The monitoring of uranium hexafluoride (UF6) enrichment at foreign facilities is important for the monitoring of nuclear safeguards and enforcement of non-proliferation treaties. Recovery methods for lithium at the end of life of batteries are necessary to ensure abundance of the …


Compatible Blends Of N-Type Polymer Semiconductors: Impact On The Morphology And Mechanics Of Flexible Optoelectronics, Zachary C. Ahmad May 2022

Compatible Blends Of N-Type Polymer Semiconductors: Impact On The Morphology And Mechanics Of Flexible Optoelectronics, Zachary C. Ahmad

Honors Theses

Conjugated polymers offer the potential for the development of robust, low-cost electronics, but achieving high mechanical deformability and high charge transport simultaneously in polymer semiconductors remains a significant challenge. In this work, blends of conjugated polymers were investigated to elucidate the influence of compatible conjugated blends on polymer morphology, mechanics, and electrical properties (using a partially conjugated polymer as the soft matrix and a fully conjugated polymer as the electrically active component). This work achieves a fundamental understanding of blend morphology for these similar components by establishing the framework for how they deform with strain. Grazing-incidence wide-angle X-ray scattering (GIWAXS) …


Synthesis, Characterization And Activity Of Palladium Catalysts On The Dual Support Of Cerium And Aluminum Oxides, Jihyeon Park Apr 2022

Synthesis, Characterization And Activity Of Palladium Catalysts On The Dual Support Of Cerium And Aluminum Oxides, Jihyeon Park

Theses and Dissertations

The effects of sequence of impregnation (Pd on cerium oxides -alumina and cerium oxides on Pd-alumina) and calcination temperature (500 ℃ and 850 ℃) on the catalytic oxidation of methane under lean conditions were investigated. The catalysts were prepared by a combination of impregnation, slurry and vortexing methods. The catalysts had 4.7 wt.% Pd and 10.7 wt.% Ce based on inductively coupled plasma optical emission spectrometry (ICP-OES) analysis. The catalysts were characterized by pulse chemisorption, temperature programmed reduction (TPD), scanning transmission electron microscopy (STEM), and X-ray photoelectron spectroscopy (XPS). The activity of the catalysts for methane combustion was measured in …


Infrared Investigation Of Lithium Ion Electrolytes: Characterization Of Structure And Dynamics Via Linear And Nonlinear Spectroscopy, Jeramie Christopher Rushing Feb 2022

Infrared Investigation Of Lithium Ion Electrolytes: Characterization Of Structure And Dynamics Via Linear And Nonlinear Spectroscopy, Jeramie Christopher Rushing

LSU Doctoral Dissertations

Lithium ion batteries are widely employed in energy storage, but the connection between the molecular interactions in their electrolytes and the macroscopic properties remains elusive. Across three vastly different electrolytes, speciation and dynamics were studied via linear and nonlinear infrared spectroscopy to shed light on this relationship. The impact of mixed solvation on ionic speciation was studied from the perspective of the anion, which revealed a significant energetic favorability for the formation of contact ion pairs in linear carbonate solvents over cyclic carbonates. Infrared spectroscopy and density functional theory calculations described a complete inversion of the speciation due to solvent …


Synthesis And Advanced Characterization Of Energy Materials, Erik Sarnello Jan 2022

Synthesis And Advanced Characterization Of Energy Materials, Erik Sarnello

Graduate Research Theses & Dissertations

Catalysts are used in an extremely broad range of systems including everything from biological systems to industrial processes. An ideal catalyst offers robust stability and high activity. This work focuses on the synthesis and characterization of materials that show promise in the field of catalysis. Advanced synchrotron characterization techniques and unique experimental design are highlighted to provide foundation work that will provide the necessary information to aid in designing and fabricating catalytic materials. Supported metal nanoparticle (SMN) catalysts are enormously crucial for many catalytic applications. However, catalyst deactivation, caused by sintering and coke formation, is a ubiquitous problem that significantly …


Characterization Of Nanoparticles Using Inductively-Coupled Plasma Mass Spectrometry, Jabez D. Campbell Jan 2022

Characterization Of Nanoparticles Using Inductively-Coupled Plasma Mass Spectrometry, Jabez D. Campbell

MSU Graduate Theses

Nanomaterials are a relatively new class of materials that have many applications which span a wide host of fields from medical products to consumer products. The possible compositions and forms of nanomaterials are just as varied as the applications. Therefore, a versatile characterization method is needed for researchers and regulators alike to ensure nanomaterials are properly used. Single Particle Inductively Coupled Plasma Mass Spectrometry (SP-ICP-MS) is a functional method that could fill the characterization need in the nanomaterial research field. Using data from both SP-ICP-MS tests and data from literature established characterization methods, the viability of making SP-ICP-MS the standard …


The Design And Characterization Of Advanced Li Metal Anodes For Next-Generation Batteries, Keegan R. Adair Aug 2021

The Design And Characterization Of Advanced Li Metal Anodes For Next-Generation Batteries, Keegan R. Adair

Electronic Thesis and Dissertation Repository

Li metal batteries have been widely regarded as the next stage of energy storage technology, which is enabled by the low electrochemical potential (-3.04 V vs. the standard hydrogen electrode) and high specific capacity (3860 mAh g-1) of the Li metal anode. However, the implementation of Li metal anodes has been hindered by several issues including parasitic side reactions with electrolyte, large volume fluctuations, and dendrite formation which can cause short-circuits and safety issues. This thesis will cover some novel Li anode stabilization strategies while using advanced characterization techniques to provide critical information on the working mechanisms of …


Synthesis And Characterization Of Novel Organic Ligands With Their Complexes Of Platinum, Copper And Uranium, Mustafa Adnan Yasin Aldulaimi Aug 2021

Synthesis And Characterization Of Novel Organic Ligands With Their Complexes Of Platinum, Copper And Uranium, Mustafa Adnan Yasin Aldulaimi

Dissertations

Transition metal complexes of symmetrical and asymmetrical Schiff bases have played a significant role in the field of coordination, inorganic, and bioinorganic chemistry as models for biological, analytical, industrial, and pharmaceutical applications. Over recent years a great deal of interest has developed in new transition metal complexes of Schiff base ligand. The preparation of novel organic ligands is the most important step in the development of metal complexes that exhibit unique properties and novel reactivity. To highlight the presentation of this dissertation and to provide more detailed investigations, the dissertation was separated into six chapters according to the sequence of …


Synthesis And Characterization Of Functiona Materials For 3d Printed Composites, Elizabeth Irene Reza May 2021

Synthesis And Characterization Of Functiona Materials For 3d Printed Composites, Elizabeth Irene Reza

Open Access Theses & Dissertations

The following body of work encompasses the synThesis, upscaling, additive manufacturing, and characterization of microspheres as functional fillers incorporated into polymer syntactic foams. Synthesizing microspheres permits control over morphology, dispersion of particles, and size while the use of direct write manufacturing allowed for the controllability of filler orientation. Two different syntactic foams were developed from similar methodologies: (1) a silicone syntactic foam (2) epoxy syntactic foam. The silicone epoxy foam showed an increasing in damping and elastic modulus. The epoxy syntactic foams showed an enhanced thermal and electrical properties.


Nitro Group Reduction For Use In Organic, Cathodic Materials, Brock G. Goeden Apr 2021

Nitro Group Reduction For Use In Organic, Cathodic Materials, Brock G. Goeden

Honors Thesis

The industrial demand for higher capacity, light-weight battery materials has skyrocketed in recent years due to heavy investments in portable electronics, electronic vehicles, and renewable energy sources. However, rechargeable battery technology has seen little improvement since the invention of the Lithium-Ion battery in the 1980s. The low energy density of the traditionally utilized LiCoO2 cathodic material (specific capacity: 272 mAh g-1), has limited its potential to meet these increasing demands. To solve this problem, our research group is investigating new types of lightweight, organic, polymeric materials with conductive backbones as a possible replacement for the cathodic materials in Lithium-Ion batteries. …


Fabrication Of Metal-Silicon Nanostructures By Reactive Laser Ablation In Liquid, Eric J. Broadhead Jan 2021

Fabrication Of Metal-Silicon Nanostructures By Reactive Laser Ablation In Liquid, Eric J. Broadhead

Theses and Dissertations

Metal-silicon nanostructures are a growing area of research due to their applications in multiple fields such as biosensing and catalysis. In addition, silicon can provide strong support effects to metal nanoparticles while being more cost effective than traditionally used supports, like titania. Traditional wet-chemical methods are capable of synthesizing metal-silicon nanostructures with a variety of composition and nanoparticle shapes, but they often require high temperatures, toxic solvents, strong reducing agents, or need capping agents added to stabilize the nanoparticles. Laser processing is an emerging technique capable of synthesizing metal-silicon composite surfaces that offers a faster, simpler, and greener synthesis route …


Analysis Of Titanium Dioxide Nanoparticles In Foods Using Raman Spectroscopic Techniques, Janamkumar Pandya Dec 2020

Analysis Of Titanium Dioxide Nanoparticles In Foods Using Raman Spectroscopic Techniques, Janamkumar Pandya

Doctoral Dissertations

Titanium dioxide (TiO2) and its nanoparticles (NPs) are widely used in various applications. Recently, the presence of TiO2 NPs in food and consumer products raised safety concerns to human health and the environment. The goal of this project is to explore the capability of Raman Spectroscopy in the analysis of TiO2-NPs and apply this technique for the analysis of TiO2-NPs in food and environmental samples. Two approaches, i.e. the ligand-based and the mapping-based, were evaluated. The ligand-based approach utilized the surface enhanced Raman scattering (SERS) property of the TiO2 NPs as a substrate to enhance the signal of a surface …


Synthesis, Characterization, And Biological Activity Of Imidazolium Salts, David Weader Jan 2020

Synthesis, Characterization, And Biological Activity Of Imidazolium Salts, David Weader

Williams Honors College, Honors Research Projects

Nonmuscle invasive bladder cancer (NMIBC) inflicts thousands of Americans annually, and is typically treated with the immunotherapy BCG. However, due to a BCG shortage, there is a new need for novel treatments of NMIBC. Addressing this issue, several imidazolium salt derivatives were synthesized and characterized with the intent of treatment within the bladder. These imidazolium salts were tested against different human bladder cancer cell lines in vitro to determine their reactivity and cytotoxicity. Among these results are GI50 concentrations for each drug, which is the concentration of drug needed to see growth inhibition in 50% of treated cells. Previous published …


Low-Valent Synthons Of Titanium : Investigations On Structure-Reactivity Relationships, Rolando Aguilar Jan 2019

Low-Valent Synthons Of Titanium : Investigations On Structure-Reactivity Relationships, Rolando Aguilar

Open Access Theses & Dissertations

Strategies for the functionalization of abundant, small molecules into products with added value provide a powerful approach to address environmental sustainability issues. Dinitrogen (N2), and carbon oxides (CO, CO2), are examples of the ample, yet, underutilized atmospheric feedstock of nitrogen and carbon building blocks to produce a variety of chemicals. Although, potentially valuable, small molecules are inert under most conditions, and as such, their industrial activation often requires heterogeneous catalysts operated under high pressures (200 atm) and temperatures (450-600 ºC).

To this end, great efforts in synthetic inorganic chemistry have been devoted to the generation of well-defined and highly reactive …


Design, Synthesis, Characterization, And Applications Of Matrix Free Polymer Nanocomposites, Yucheng Huang Jan 2018

Design, Synthesis, Characterization, And Applications Of Matrix Free Polymer Nanocomposites, Yucheng Huang

Theses and Dissertations

This dissertation focuses on the design, synthesis, characterization and application of matrix free polymer nanocomposites. Reversible addition-fragmentation chain transfer (RAFT) polymerization was used to synthesize block copolymers and polymer grafted silica nanoparticles with precise control over architectures.

In the first chapter, thermoplastic elastomer (TPE) grafted nanoparticles were prepared by grafting block copolymer poly(styrene-block-(n-butyl acrylate)) onto silica nanoparticles (NPs) (~15nm) via surface initiated RAFT polymerization. The effects of polymer chain length and graft density on the mechanical properties were investigated using films made solely from the grafted NPs. The ultimate tensile stress and elastic modulus increased with the increase of PS …


Synthesis And Characterization Of Polydiene-Grafted Nanoparticles, Zaid Mohammed Abbas Alajeeli Jan 2018

Synthesis And Characterization Of Polydiene-Grafted Nanoparticles, Zaid Mohammed Abbas Alajeeli

Theses and Dissertations

This dissertation presents the design, synthesis, and characterization of polydiene grafted nanoparticles as a way to tailor nanocomposite interfaces and properties via interface design. The polymerization of dienes was done via reversible addition fragmentation chain transfer (RAFT) polymerization. The grafting of polymer chains on the surface of silica nanoparticles can be controlled through the molecular design of the RAFT agents attached to the nanoparticles surface. The properties of the nanocomposites largely depended on the interface between the particles and the polymer matrix. In the first part of this work, the polymerization of diene monomers was done on 15 nm diameter …


Characterization Of Γ-Butyrolactone Rings: A Computational And Toxicological Study, Donald C. Kidd Jun 2017

Characterization Of Γ-Butyrolactone Rings: A Computational And Toxicological Study, Donald C. Kidd

Masters Theses

Given the declining state of the natural environment, identifying green methodologies in synthetic chemistry is becoming paramount. An under explored area of green chemistry, is the use of catalytic systems in green solvents. One interesting concept in green chemistry is the use of N-Heterocyclic Carbenes (NHCs) as organocatalysts.

Thiamine or vitamin B1 was one of the first NHCs recognized. Thiamine is required for carbohydrate metabolism and helps the cell produce adenosine triphosphate (ATP). Over the last 20 years NHCs have been found to be efficient catalysts in carbon-carbon bond forming reactions.

But to date, little research has been done exploring …


Characterization Of Sufs And Sufe Of Suf Pathway For Fe-S Cluster Assembly In Escherichia Coli, Guangchao Dong May 2017

Characterization Of Sufs And Sufe Of Suf Pathway For Fe-S Cluster Assembly In Escherichia Coli, Guangchao Dong

Theses and Dissertations

Fe-S clusters are one major type of the sulfur-containing cofactors, which conduct essential functions in organisms. The Suf pathway is one of the three main pathways for the biosynthesis of Fe-S clusters. In E. coli, the Suf pathway is utilized under iron limitation and oxidative stress. This ability is important for pathogens to survive. Also, the Suf pathway is found to be exclusive in bacteria, so it is a good target for novel antibiotic design. SufS is a cysteine desulfurase in the Suf pathway to extract sulfur from L-cysteine. It needs the enhancement of SufE. To better understand the catalytic …


Improved Characterization And Analysis Strategies For Uv-Lif Bioaerosol Instrumentation: Lab And Field Application, Nicole Justine Savage Jan 2017

Improved Characterization And Analysis Strategies For Uv-Lif Bioaerosol Instrumentation: Lab And Field Application, Nicole Justine Savage

Electronic Theses and Dissertations

Atmospheric particles of biological origin, also referred to as bioaerosols or primary biological aerosol particles (PBAP), are important to various human health and environmental systems. There has been a recent steep increase in the frequency of published studies utilizing commercial instrumentation based on ultraviolet laser/light-induced fluorescence (UV-LIF), such as the WIBS (wideband integrated bioaerosol sensor), for bioaerosol detection both outdoors and in the built environment. Significant work over several decades supported the development of these technologies, but efforts to systematically characterize the operation of new commercial sensors has remained lacking. Specifically, there are gaps in the understanding of how different …


Characterization Of The Suf Fe-S Pathway In Escherichia Coli, Naimah Bolaji Jan 2017

Characterization Of The Suf Fe-S Pathway In Escherichia Coli, Naimah Bolaji

Theses and Dissertations

Iron is an essential transition metal required by almost all organisms for use as a cofactor in many metabolic processes such as respiration and photosynthesis. Iron can be combined with elemental sulfur to form an iron-sulfur (Fe-S) cluster. In bacterial pathogens, Fe-S cluster cofactors carry out critical functions and the Fe-S cluster biogenesis pathway is essential for their survival. In E. coli, the Suf pathway assembles Fe-S clusters under conditions of iron starvation and oxidative stress. While some mechanistic details of the Fe-S cluster biogenesis have been well-characterized, the process of in vivo iron donation remains unclear. Iron storage proteins …


Materials Discovery Of Reduced Early Transition Metal Compounds: Crystal Growth And Characterization, Dileka Abeysinghe Jan 2017

Materials Discovery Of Reduced Early Transition Metal Compounds: Crystal Growth And Characterization, Dileka Abeysinghe

Theses and Dissertations

Materials discovery via crystal growth is an active area of research that has led to the preparation of many novel materials along with the determination of their crystal structures. One sub-category in this diverse field of materials is the preparation of early transition metal reduced oxides. These reduced oxides often exhibit unusual electronic and magnetic properties. Due to the synthetic challenges associated with early transition metal reduction, new and facile methods to prepare reduced oxides is of great interest. These limitations can be overcome by using a carefully selected redox neutral flux, a vacuum sealed fused silica tube, and metal …


Deep Eutectic Solvents Synthesis, Characterization And Applications In Pretreatment Of Lignocellulosic Biomass, Ganesh Degam Jan 2017

Deep Eutectic Solvents Synthesis, Characterization And Applications In Pretreatment Of Lignocellulosic Biomass, Ganesh Degam

Electronic Theses and Dissertations

There has been an increased interest in green solvents and biofuels with the growing environmental awareness across the globe. Conventional methods of biofuel production involve the use of large quantities of molecular solvents and ionic liquids (ILs), but they have the drawbacks of high vapor pressure (organic solvents), toxicity, and recyclability in terms of a sustainability point of view. Deep eutectic solvents (DESs) have recently emerged as green alternatives to molecular solvents and ionic liquids (ILs). They are defined as eutectic mixtures formed between quaternary ammonium, phosphonium or sulfonium salts and hydrogen bond donors (HBDs) with the freezing temperature lower …


Mass Spectrometric Characterization Of Remotely Charged Amino Acids And Peptides, Damodar Koirala Aug 2016

Mass Spectrometric Characterization Of Remotely Charged Amino Acids And Peptides, Damodar Koirala

Open Access Dissertations

Ion–molecule reactions in a flowing afterglow are used to examine the electronic structure of 3- and 4-pyridinylnitrene-n-oxide radical anions. Reactions with nitric oxide are generally similar to those reported previously for other aromatic nitrene radical anions. In particular, phenoxide formation by nitrogen–oxygen exchange is observed with both isomers. Oxygen atom abstraction by NO is also observed with both isomers. Very significant differences in the reactivity are observed in the reactions of the two isomers with carbon disulfide. The reactivity of the 3-noxide isomer with CS2 is similar to that observed previously for nitrene radical anions, and reactions of the n-oxide …


Developing Synthetic Methods To Prepare Discrete Metal-Organic Nanotubes, Derek L. Mull May 2016

Developing Synthetic Methods To Prepare Discrete Metal-Organic Nanotubes, Derek L. Mull

Masters Theses

Metal-organic nanotubes (MONTs) are an emerging class of discrete materials that are the 1D variant of metal-organic frameworks (MOFs). MONTs have potential to become an alternative 1D material to carbon nanotubes, metal oxide nanotubes, and boron nitride nanotubes because they possess an organic ligand that can be functionalized and tuned for specific applications. Despite this potential, only a handful of structures have been reported and only two examples of discrete MONTs exist in the literature. It is thus imperative to develop general methods to prepare and characterize discrete MONTs to bring them to the forefront of the scientific literature.

Efforts …


Low-Temperature Artificial Maturation Studies Of Type Ii And Type Iii Kerogens: Implications For Biogenic Gas Production, Albert Willy Nguena Kamga Apr 2016

Low-Temperature Artificial Maturation Studies Of Type Ii And Type Iii Kerogens: Implications For Biogenic Gas Production, Albert Willy Nguena Kamga

Chemistry & Biochemistry Theses & Dissertations

Ancient organic matter (OM) in shales and coals, known mainly as Type II and Type III OM are known to produce both biogenic, thermogenic gas and oil. In this dissertation, mild artificial maturation, via closed system pyrolysis, is employed to determine the thermal reactivity of Type II and Type III OM beyond diagenesis. We select three Type II kerogens: i) Type II kerogen isolated from recent cores (3.3 Ma, Ro = 0.28) recovered from an upwelling basin in Namibia, Africa referred to as ODP Sediment, ii) Type II-S isolated from sediments (150 Ma, Ro = 0.38) recovered from an outcrop …


Development And Application Of New Solid-State Models For Low-Energy Vibrations, Lattice Defects, Entropies Of Mixing, And Magnetic Properties, Jacob M. Schliesser Mar 2016

Development And Application Of New Solid-State Models For Low-Energy Vibrations, Lattice Defects, Entropies Of Mixing, And Magnetic Properties, Jacob M. Schliesser

Theses and Dissertations

Low-temperature heat capacity data contain information on the physical properties of materials, and new models continue to be developed to aid in the analysis and interpretation of heat capacity data into physically meaningful properties. This work presents the development of two such models and their application to real material systems. Equations describing low-energy vibrational modes with a gap in the density of states (DOS) have been derived and tested on several material systems with known gaps in the DOS, and the origins of such gaps in the DOS are presented. Lattice vacancies have been shown to produce a two-level system …


Crystal Growth And Characterization Of Reduced Early Transition Metal Compounds Grown Via Hydrothermal And Molten Flux Methods, Anthony J. Cortese Jan 2016

Crystal Growth And Characterization Of Reduced Early Transition Metal Compounds Grown Via Hydrothermal And Molten Flux Methods, Anthony J. Cortese

Theses and Dissertations

Interest in new and facile ways to prepare early transition metal reduced oxides has recently been increasing. In the past difficult flux techniques involving vacuum furnaces, expensive metal tubing, complicated electrolytic reduction apparatuses, were used to achieve in situ reduction of fully oxidized transition metal precursors. Often times these techniques were coupled with use of a difficult flux, such as boric acid, which is hard to remove due to its insolubility in water at room temperature. These limitations can be circumvented in multiple ways, including carefully choosing a redox neutral flux, using evacuated fused silica tubes for reaction vessels, and …