Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Vibrational Energy Levels Of The Simplest Criegee Intermediate (Ch₂Oo) From Full-Dimensional Lanczos, Mctdh, And Multimode Calculations, Hua-Gen Yu, Steve Alexandre Ndengué, Jun Li, Richard Dawes, Hua Guo Aug 2015

Vibrational Energy Levels Of The Simplest Criegee Intermediate (Ch₂Oo) From Full-Dimensional Lanczos, Mctdh, And Multimode Calculations, Hua-Gen Yu, Steve Alexandre Ndengué, Jun Li, Richard Dawes, Hua Guo

Chemistry Faculty Research & Creative Works

Accurate vibrational energy levels of the simplest Criegee intermediate (CH2OO) were determined on a recently developed ab initio based nine-dimensional potential energy surface using three quantum mechanical methods. the first is the iterative Lanczos method using a conventional basis expansion with an exact Hamiltonian. the second and more efficient method is the multi-configurational time-dependent Hartree (MCTDH) method in which the potential energy surface is refit to conform to the sums-of-products requirement of MCTDH. Finally, the energy levels were computed with a vibrational self-consistent field/virtual configuration interaction method in MULTIMODE. the low-lying levels obtained from the three methods are …


The Intersection Of Nuclear Magnetic Resonance And Quantum Chemistry, Yali Wang Aug 2015

The Intersection Of Nuclear Magnetic Resonance And Quantum Chemistry, Yali Wang

Department of Chemistry: Dissertations, Theses, and Student Research

Nuclear Magnetic resonance and quantum chemistry have been recognized to be strong tools for probing the structure and dynamics of molecules to further solve chemistry and biological problems. Chemical shift measured by NMR experiment and chemical shielding, molecular energy and molecular structure calculated by quantum chemistry provide extensive information.

Exact analytic gradients, are obtained for cavitation, dispersion and repulsion energies and time-dependent density functional theory for the continuum solvation model, which could be used to probe the structure, dynamics and properties of molecules. Copper in CuA azurin is recognized to be coordinated by a structure water molecule by comparing …


Kinetic Isotope Effect Of The ¹⁶O+³⁶O₂ And ¹⁸O+³²O₂ Isotope Exchange Reactions: Dominant Role Of Reactive Resonances Revealed By An Accurate Time-Dependent Quantum Wavepacket Study, Zhigang Sun, Dequan Yu, Wenbo Xie, Jiayi Hou, Richard Dawes, Hua Guo May 2015

Kinetic Isotope Effect Of The ¹⁶O+³⁶O₂ And ¹⁸O+³²O₂ Isotope Exchange Reactions: Dominant Role Of Reactive Resonances Revealed By An Accurate Time-Dependent Quantum Wavepacket Study, Zhigang Sun, Dequan Yu, Wenbo Xie, Jiayi Hou, Richard Dawes, Hua Guo

Chemistry Faculty Research & Creative Works

The O + O2 isotope exchange reactions play an important role in determining the oxygen isotopic composition of a number of trace gases in the atmosphere, and their temperature dependence and kinetic isotope effects (KIEs) provide important constraints on our understanding of the origin and mechanism of these and other unusual oxygen KIEs important in the atmosphere. This work reports a quantum dynamics study of the title reactions on the newly constructed Dawes-Lolur-Li-Jiang-Guo (DLLJG) potential energy surface (PES). The thermal reaction rate coefficients of both the 18O + 32O2 and 16O + 36O2 reactions obtained using the …


Angular Momentum, Ronald Lovett Mar 2015

Angular Momentum, Ronald Lovett

Topics in Quantum Mechanics

No abstract provided.


State-To-State Reaction Dynamics Of ¹⁸O+³²O₂ Studied By A Time-Dependent Quantum Wavepacket Method, Wenbo Xie, Lan Liu, Zhigang Sun, Hua Guo, Richard Dawes Feb 2015

State-To-State Reaction Dynamics Of ¹⁸O+³²O₂ Studied By A Time-Dependent Quantum Wavepacket Method, Wenbo Xie, Lan Liu, Zhigang Sun, Hua Guo, Richard Dawes

Chemistry Faculty Research & Creative Works

The title isotope exchange reaction was studied by converged time-dependent wave packet calculations, where an efficient 4th order split operator was applied to propagate the initial wave packet. State-to-state differential and integral cross sections up to the collision energy of 0.35 eV were obtained with 32O2 in the hypothetical j0 = 0 state. It is discovered that the differential cross sections are largely forward biased in the studied collision energy range, due to the fact that there is a considerable part of the reaction occurring with large impact parameter and short lifetime relative to the rotational period …