Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemistry

PDF

Theses and Dissertations

2015

Nanoparticle

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

The Synthesis And Characterization Of Ferritin Bio Minerals For Photovoltaic, Nanobattery, And Bio-Nano Propellant Applications, Trevor Jamison Smith Jul 2015

The Synthesis And Characterization Of Ferritin Bio Minerals For Photovoltaic, Nanobattery, And Bio-Nano Propellant Applications, Trevor Jamison Smith

Theses and Dissertations

Material science is an interdisciplinary area of research, which in part, designs and characterizes new materials. Research is concerned with synthesis, structure, properties, and performance of materials. Discoveries in materials science have significant impact on future technologies, especially in nano-scale applications where the physical properties of nanomaterials are significantly different than their bulk counterparts. The work presented here discusses the use of ferritin, a hollow sphere-like biomolecule, which forms metal oxo-hydride nanoparticles inside its protein shell for uses as a bio-inorganic material.Ferritin is capable of forming and sequestering 8 nm metal-oxide nanoparticles within its 2 nm thick protein shell. A …


Synthesis, Surface Functionalization, And Biological Testing Of Iron Oxide Nanoparticles For Development As A Cancer Therapeutic, Stanley E. Gilliland Iii Jan 2015

Synthesis, Surface Functionalization, And Biological Testing Of Iron Oxide Nanoparticles For Development As A Cancer Therapeutic, Stanley E. Gilliland Iii

Theses and Dissertations

Iron oxide nanoparticles are highly researched for their use in biomedical applications such as drug delivery, diagnosis, and therapy. The inherent biodegradable and biocompatible nanoparticle properties make them highly advantageous in nanomedicine. The magnetic properties of iron oxide nanoparticles make them promising candidates for magnetic fluid hyperthermia applications. Designing an efficient iron oxide nanoparticle for hyperthermia requires synthetic, surface functionalization, stability, and biological investigations. This research focused on the following three areas: optimizing synthesis conditions for maximum radiofrequency induced magnetic hyperthermia, designing a simple and modifiable surface functionalization method for specific or broad biological stability, and in vitro and in …