Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 521

Full-Text Articles in Physical Sciences and Mathematics

Multiscale Modeling Of Morphology And Proton/Ion Transport In Electrolytes, Zhenghao Zhu Aug 2024

Multiscale Modeling Of Morphology And Proton/Ion Transport In Electrolytes, Zhenghao Zhu

Doctoral Dissertations

Understanding structure-function relationships in electrolytes is essential for advancing energy conversion and storage. This dissertation employs multiscale modeling and simulations to study the morphology and proton/ion transport in various electrolytes for electrochemical systems, including anion exchange membranes (AEMs), protic ionic liquids (PILs), pure phosphoric acid (PA) and aqueous acid solutions, ionic liquids (ILs), and polymerized ionic liquids (polyILs).

Mesoscale dissipative particle dynamics (DPD) simulations were employed to study the hydrated morphology of polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene (SEBS)-based AEMs. The results indicate that the choice of the functional group moderately affects the water distribution and has little influence on the …


Investigation Of Molecular Transition Metal Complexes: Structures, Magnetic Properties, And Reactivities, Adam T. Hand Aug 2024

Investigation Of Molecular Transition Metal Complexes: Structures, Magnetic Properties, And Reactivities, Adam T. Hand

Doctoral Dissertations

The dissertation describes the work on transition metal complexes to determine their structures, magnetic properties, and reactivities. Molecular magnetic complexes containing one cobalt(II) or rhenium(IV) ion have been studied to obtain their characteristic zero-field splittings and spin-phonon couplings by magnetometry and advanced spectroscopies. The investigation of spin relaxation and phonon features gives insight into potential magnetic relaxation mechanisms. Studies by ligand field theory, including ab initio ligand-field analysis, show how coordination environments of the metal centers affect the magnetic properties. Through the analyses, the impact of the coordination geometry/symmetry on the zero-field splittings can be explained. Such understanding of magneto-structural …


Data Driven Acceleration Of Coupled-Cluster Calculations Using Machine Learning, Multitask Learning And Physics Imposed Learning, Perera Don Varuna Sanjaya Pathirage Aug 2024

Data Driven Acceleration Of Coupled-Cluster Calculations Using Machine Learning, Multitask Learning And Physics Imposed Learning, Perera Don Varuna Sanjaya Pathirage

Doctoral Dissertations

Data-driven coupled-cluster singles and doubles (DDCCSD) method developed by Townsend and Vogiatzis aims at predicting the coupled-cluster t2 amplitudes using MP2-level electronic structure data with machine learning. In this work we address limitations of the DDCCSD method to expand the applicability and increase the accuracy. First, we implement localized molecular orbitals (LMO) to the DDCCSD method. There is a ten-fold increase in accuracy when the LMO implementation is used compared to the canonical molecular orbital implementation. Next, we introduced five data selection techniques to select data for testing and training. Here we were able to achieve accuracies less than …


Investigating Liquid-Liquid Phase Separation In Lipid Bilayers: A Multi-Modal Approach Utilizing Spectroscopy, Microscopy, And Cryo-Em, Karan D. Sharma Aug 2024

Investigating Liquid-Liquid Phase Separation In Lipid Bilayers: A Multi-Modal Approach Utilizing Spectroscopy, Microscopy, And Cryo-Em, Karan D. Sharma

Doctoral Dissertations

This thesis explores the characterization of liquid-liquid phase separation in model lipid bilayers using fluorescence, optical microscopy, and cryo-electron microscopy (cryo-EM) integrated with machine learning (ML) analysis. The plasma membrane has a complex composition, lateral heterogeneity and dynamic structure which makes it challenging to study. Simplified model membranes containing three or four-component lipid mixtures, typically comprising low- and high-melting lipids along with cholesterol, form phase separated systems that mimic lateral heterogeneity/lipid rafts in biomembranes. In living cells, lipid rafts are thought to form nanoscopic domains smaller than 200 nm. These domains cannot be resolved by conventional optical microscopy. For a …


Molecule-Based Quantum Materials Under Extreme Conditions, Avery Leon Blockmon Aug 2024

Molecule-Based Quantum Materials Under Extreme Conditions, Avery Leon Blockmon

Doctoral Dissertations

Molecule-based quantum materials are a class of compounds with competition between the spin, orbitals, charge, and lattice. They feature flexible architectures and structural designs that can be easily modified for different functionalities. As a result of their overall low energy scales, they can be easily tuned with external stimuli like magnetic field or pressure to reveal new states and properties. This dissertation presents a high magnetic field investigation of three different molecule-based quantum materials under extreme conditions revealing insights into their structural, electronic, and magnetic properties.

My initial study analyzes decoherence pathways in spin qubit Na9[Ho(W5O …


Investigation Of Magnetic, Spectroscopic, And Structural Properties Of Molecular Metal Compounds, Alexandria Bone May 2024

Investigation Of Magnetic, Spectroscopic, And Structural Properties Of Molecular Metal Compounds, Alexandria Bone

Doctoral Dissertations

Compounds exhibiting single-molecule magnetism (SMM) are of current interest for potential use in molecular data storage and quantum computing applications. However, rapid magnetic relaxation at desired operating temperatures currently limits the use of these materials, and a more thorough understanding of the magnetic and vibrational transitions that affect magnetic memory is required to inform SMM design. The primary focus of this dissertation is the study of magnetic and vibrational modes in molecular magnetic compounds via advanced spectroscopic techniques such as inelastic neutron scattering (INS), far-IR magneto-spectroscopy (FIRMS), and high-field, high-frequency electron paramagnetic resonance (HFEPR) to directly observe transitions among zero-field …


Investigating Small Molecule Behavior In Living Bacterial Membranes With Second Harmonic Scattering, Marea J. Blake May 2024

Investigating Small Molecule Behavior In Living Bacterial Membranes With Second Harmonic Scattering, Marea J. Blake

Doctoral Dissertations

A molecule's entry into a cell is impeded primarily at the surface of Gram-positive bacteria. This interface serves as the boundary separating cellular contents from the external environment and is composed of a thick layer of peptidoglycan and a lipid bilayer equipped with protein and lipid species with various roles including that of small-molecule transport. As such, understanding these molecule-membrane interactions is imperative to examine in order to design novel drugs or adjuvants to combat the global antibiotic resistance predicament. Knowledge regarding passive diffusion and overall organization of small molecules in the lipid bilayer of living Gram-positive cells is limited …


Design, Synthesis, And Characterization Of Complex Chalcogenides For Energy Storage And Energy Conversion Applications, Srikanth Balijapelly Jan 2024

Design, Synthesis, And Characterization Of Complex Chalcogenides For Energy Storage And Energy Conversion Applications, Srikanth Balijapelly

Doctoral Dissertations

"Through this investigation, complex chalcogenides with the combination of main group metals, transition metals, and rare earth metals have been synthesized using the building block approach and their structure-property relationships are evaluated. The main emphasis of research is on rationally designing new materials for applications in sodium and lithium ion conducting solid electrolytes, cathodes, thermoelectrics, and nonlinear optics. Along with the experimental studies, theoretical calculations are also employed to better understand the physicochemical properties of the synthesized compounds.

The first part of the research will discuss designing alkali ion containing complex chalcogenides using the building block approach. This investigation resulted …


Advanced Mass Spectrometry Method Development And Applications For Assessment Of Traumatic Brain Injury And Legionella Pneumophila Dissinfection With Copper, Austin Chase Sigler Jan 2024

Advanced Mass Spectrometry Method Development And Applications For Assessment Of Traumatic Brain Injury And Legionella Pneumophila Dissinfection With Copper, Austin Chase Sigler

Doctoral Dissertations

"Pathological processes often involve complex biochemical changes which can be assessed using advanced mass spectrometry. In this present dissertation, two fields were studied: traumatic brain injury (TBI), and water contamination by L. pneumophilia. TBI is a pressing public health concern for which current clinical tools remain inadequate. We present newly developed mass spectrometric methods to access metabolites associated with blast induced TBI. We applied these methods to the biofluids of soldiers conducting explosives training. Significant changes in several metabolites were observed between pre- and post-blast specimens, including changes that increased with repeated exposure. These changes point to the possibility of …


Analytical Methods For Monitoring Traumatic Brain Injury Biomarkers/Treatment And Pharmaceutical Residual Solvents, Olajide Philip Adetunji Jan 2024

Analytical Methods For Monitoring Traumatic Brain Injury Biomarkers/Treatment And Pharmaceutical Residual Solvents, Olajide Philip Adetunji

Doctoral Dissertations

"The development of highly sensitive and efficient analytical methods utilizing advanced instrumentation is necessary to help improve disease diagnosis and therapeutics. A major neuro-consequence of traumatic brain injury (TBI) is oxidative stress from the generation of reactive oxygen species and the depletion of antioxidant defenses. Alteration in concentrations of certain small molecules also occurs with the disease progression and can help understand TBI pathophysiology. Two analytical methods employing liquid chromatography with tandem mass spectrometry (LC-MS/MS) were developed and validated to monitor the potential small-molecule TBI biomarkers at sub-ppb levels. Subsequently, the neuroprotective effect of an antioxidant prodrug, N-acetylcysteine amide (NACA), …


Catalytic Control Of The Nanomorphology And Mechanical Properties Of Aliphatic Shape-Memory Aerogels, A B M Shaheen Ud Doulah Jan 2024

Catalytic Control Of The Nanomorphology And Mechanical Properties Of Aliphatic Shape-Memory Aerogels, A B M Shaheen Ud Doulah

Doctoral Dissertations

"Shape-memory poly(isocyanurate-urethane) (PIR-PUR) aerogels are nanoporous solids that can return to their original shape after being compressed, through a heating actuation step. This thesis compares the effectiveness of various metal ions as catalysts in the formation of PIR-PUR aerogels, and explores the correlation between catalytic activity, nanomorphology, and mechanical properties of the resulting aerogels. The gelation rate was found to increase from Fe to Cu and then decline from Cu to Ga in the periodic table. CuCl2 was found to be the fastest catalyst, and FeCl3 the slowest. The morphology of the aerogels changed from bicontinuous to spheroidal …


Chirality Determination Using Three-Wave Mixing Microwave Spectroscopy, Nicole Taylor Moon Jan 2024

Chirality Determination Using Three-Wave Mixing Microwave Spectroscopy, Nicole Taylor Moon

Doctoral Dissertations

"Rotational spectroscopy has established itself as a reliable gas-phase spectroscopic technique for the structural determination of molecules. This reliability has stemmed from both advancements in microwave technology and a willingness from the community to push the boundaries of the field. In this dissertation, the boundaries are tested in both how well the technique can determine the structure of molecules exhibiting large amplitude motion and through chirality determination. The first half of this dissertation explores the use of deep averaging to determine the structure of silicon containing molecules in collaboration with Dr. Guirgis from the College of Charleston. For each of …


Understanding Catalyst Design Principles In Transition Metal Mixed Anionic Chalcogenides For Electrocatalytic Energy Conversion, Ibrahim Abdullahi Jan 2024

Understanding Catalyst Design Principles In Transition Metal Mixed Anionic Chalcogenides For Electrocatalytic Energy Conversion, Ibrahim Abdullahi

Doctoral Dissertations

"This research focused on the synthetic design of transition metal mixed anionic chalcogenide catalysts containing various ligand types around the central metal atom (chalcogen anion and chalcogen-based organic ligand) generating diverse crystal structure types applied for water splitting and carbon dioxide reduction reactions (CO2RR).

A series of catalysts were synthesized starting with isolated metal complexes (MEn) with a central metal core (M = Co, Ni, Cu, and Cr) through molecular clusters, to bulk nanostructured solids of similar M-E coordination. Bis(dichalcogenoimidodiphosphinato) were employed as ligands in the metal complexes, and anionic chalcogen (E = S, Se, and …


Highly Dipole-Parallel Aligned Nonlinear Optical Organic Molecular Crystalline Materials: Rational Design, Experimental And Theoretical Studies Of Supramolecular Structures And Non-Covalent Interactions, Harmeet Singh Bhoday Jan 2024

Highly Dipole-Parallel Aligned Nonlinear Optical Organic Molecular Crystalline Materials: Rational Design, Experimental And Theoretical Studies Of Supramolecular Structures And Non-Covalent Interactions, Harmeet Singh Bhoday

Doctoral Dissertations

Highly dipole-parallel aligned donor-acceptor substituted organic molecules are attractive for a wide array of applications, including nonlinear optics. However, only a limited number of crystals are known to adopt polar non-centrosymmetric space groups. The concepts guiding the fabrication of these polar materials have been described. The study focused on unsymmetrical donor-acceptor substituted azines and butadiene's. An improved design over (MeO, Y)-azines led to the realization of three crystals perfectly aligned in dipole parallel orientation for (PhO, Y)-azines with Y = Cl, Br, I, and one nearly perfectly aligned crystal for Y = F (Paper I). The unique bonding properties associated …


Material Formulation And Process Optimization Towards Fabricating Robust 3d Printed Structures, Austin Riggins Dec 2023

Material Formulation And Process Optimization Towards Fabricating Robust 3d Printed Structures, Austin Riggins

Doctoral Dissertations

This dissertation focuses on understanding and addressing the fundamental physicochemical phenomena that lead to weak interfaces and structural warpage in material extrusion 3D printing. Polymeric feedstocks used for this manufacturing technique were manipulated through the incorporation of additives that alter the dynamics of the matrix during and after printing. In Chapter II, adhesion between layers of structures printed from PEEK was strengthened through a combination of low-molecular weight additive incorporation and post-printing thermal annealing. Chapter III reports a method for decreasing the irreversible thermal strain of structures printed from poly(lactic acid) by introducing nanographene and photoinitiator additives into the feedstock …


Integration Of Raman Spectroscopy And Python-Based Data Analysis For Advancing Neurobiological Research, Natalie E. Dunn Dec 2023

Integration Of Raman Spectroscopy And Python-Based Data Analysis For Advancing Neurobiological Research, Natalie E. Dunn

Doctoral Dissertations

The field of Raman spectroscopy continues to expand into biological applications due to its usefulness as a non-invasive technique that can be utilized qualitatively and quantitatively. However, the inherent weakness of Raman scattering leads to the need for each collected spectra to undergo a preprocessing step to remove noise, background drift, and cosmic rays. Biological research in particular needs large datasets due to the increased variability in samples. As datasets grow, the need to perform preprocessing on each individual spectra becomes daunting. Often, these steps are done by hand with the help of specialized software programs. Preprocessing can be accelerated …


Theoretical Studies Of Adsorption And Reactivity At The Gas-Solid Interface, Carson J. Mize Aug 2023

Theoretical Studies Of Adsorption And Reactivity At The Gas-Solid Interface, Carson J. Mize

Doctoral Dissertations

Catalytic transformations of small molecules is of great interest for both laboratory and industrial practices. Two specific transformations are ethylene to ethylene oxide and combinations of azides and alkenes into aziridine molecules. Ethylene oxide is an epoxide used as a feed-stock for many bulk reactions and commercial products such as antifreeze and various sterilization techniques, while molecules with the aziridine functional group are used for many ring opening and closing techniques as well as in pharmaceuticals and other drug treatments. For production of ethylene oxide, the combination of oxygen adsorbed onto a silver crystal is the known catalysts for thus …


Chirality, Symmetry-Breaking, And Chemical Substitution In Multiferroics, Kiman Park Aug 2023

Chirality, Symmetry-Breaking, And Chemical Substitution In Multiferroics, Kiman Park

Doctoral Dissertations

Multiferroic materials attract significant attention due to their potential utility in a broad range of device applications. The inclusion of heavy metal centers in these materials enhances their magnetoelectric properties, yielding fascinating physical phenomena such as the Dzyaloshinskii–Moriya interaction, nonreciprocal directional dichroism, enhancement of spin-phonon coupling, and spin-orbit-entangled ground states. This dissertation provides a comprehensive survey of magnetoelectric multiferroics containing heavy metal centers and explores spectroscopic techniques under extreme conditions. A microscopic examination of phase transitions, symmetry-breaking, and structure-property relationships enhances the fundamental understanding of coupling mechanisms.

In A2Mo3O8 (A = Fe, Zn, Ni, and Mn), we use optical spectroscopy …


Comprehensive Studies Of Magnetic Properties Of Metal-Organic Frameworks And Molecular Compounds, Pagnareach Tin Aug 2023

Comprehensive Studies Of Magnetic Properties Of Metal-Organic Frameworks And Molecular Compounds, Pagnareach Tin

Doctoral Dissertations

Single-ion magnets (SIMs) are at the forefront of molecular electronic spin magnets with potential applications in magnetic memory storage devices. However, the magnetic properties of the SIMs are yet to be completely understood, especially the magnetic properties of large anisotropy systems. A part of this dissertation is to utilize optical and neutron spectroscopies such as far-IR magneto-spectroscopy (FIRMS) and inelastic neutron scattering (INS) to quantify the anisotropy and study the phonon properties of the SIMs as two-dimensional (2-D) metal-organic frameworks (MOFs) or coordination polymer (CP), and a molecular magnet. In addition, ab initio calculations are used to understand the origin …


Dinitrogen Functionalization Using A Molybdenum Atom: Bridging The Gap Between Small And Coordination Complexes Via Quantum Mechanical Methods, Maria Virginia White Aug 2023

Dinitrogen Functionalization Using A Molybdenum Atom: Bridging The Gap Between Small And Coordination Complexes Via Quantum Mechanical Methods, Maria Virginia White

Doctoral Dissertations

Chemistry devotes a significant amount of its research to understanding small molecule activation from an electronic structure perspective to help with the investigation of the reaction pathways of catalytically active substances that can promote biomimetic catalysis. A large portion of the energy used annually in our planet is used for the artificial nitrogen fixation (Haber-Bosch process), which renders dinitrogen activation a subject of study. Molybdenum, a fourth row transitional metal, has demonstrated its effectiveness as an essential component of the dinitrogen reduction catalytic process. To better understand the multiple dinitrogen molybdenum binding modes, the work described herein combines wave function …


Clickable Lipid Precursors As Chemical Tools For Imaging And Tracking Lipids, Christelle Anne Fernandez Ancajas Aug 2023

Clickable Lipid Precursors As Chemical Tools For Imaging And Tracking Lipids, Christelle Anne Fernandez Ancajas

Doctoral Dissertations

The regulation of lipid metabolism is crucial for maintaining the human body, as disruptions in lipid homeostasis have drastic implications. While lipids are known for their roles as energy stores as well as for cellular compartmentalization, certain lipid classes can serve as signaling agents that govern cellular behavior and physiology or as biomarkers whose concentration and spatial organization impacts cell fate. Thus, dysregulation in these processes coincide with a variety of diseases and cancers. However, the ability to track lipids has been a long-standing challenge in the area of chemical biology since lipids are chemically diverse and undergo continuous interconversion …


Synthesizing, Purifying, And Characterizing Molten Chloride Salts, Phillip W. Halstenberg May 2023

Synthesizing, Purifying, And Characterizing Molten Chloride Salts, Phillip W. Halstenberg

Doctoral Dissertations

Molten chloride salts have vast potential as heat transfer fluids with both nuclear and concentrated solar power applications. For application in energy systems, the characteristics that govern these systems must be well understood. This work focuses on inorganic molten chloride salts with a special emphasis on the experimental aspect of chemical research. Chapter 2 covers the synthetic approaches for the formation of molten chloride mixtures. Many salts can be purchased from industrial suppliers, but most must be purified therefore, Chapter 3 evaluates various methodology developed for removal of impurities in salt mixtures. Once the salt of proper content and purity …


Mechanochemical Synthesis Of Task-Specific Conjugated Porous Networks Towards Enhanced Energy Storage, Juntian Fan May 2023

Mechanochemical Synthesis Of Task-Specific Conjugated Porous Networks Towards Enhanced Energy Storage, Juntian Fan

Doctoral Dissertations

Conjugated scaffolds with high electronic conductivity, high surface area, etc. are promising materials for diverse technological applications, especially in the electrochemical field. However, the current synthesis methods are still limited to the traditional solution-based method or the ionothermal method, which always require an inert atmosphere shield, large amounts of organic solvents, noble catalysts, long reaction time up to days, and high temperatures, etc. Therefore, there is a common goal of developing conjugated scaffolds through facile, green, straightforward pathways. Mechanochemistry, which is an efficient, sustainable, solvent-free methodology, could provide a unique reaction environment to synthesize this kind of functionalized materials, resulting …


Utilizing Ultra-Performance Chromatography High-Resolution Mass Spectrometry To Investigate Fatty Acid Mediated Antibiotic Tolerance, Brittni Woodall May 2023

Utilizing Ultra-Performance Chromatography High-Resolution Mass Spectrometry To Investigate Fatty Acid Mediated Antibiotic Tolerance, Brittni Woodall

Doctoral Dissertations

The lipid membrane is the first component necessary to sustain life. To maintain homeostasis, segregate cellular machinery, provide protection from the environment, and reproduce, an organism must establish a boundary in which the processes can occur. Throughout the last two decades, research has propelled our knowledge of lipid membranes much beyond original hypotheses. Once thought of to be static and uniform, the understanding of the lipid membrane has evolved to encompass a structure that is responsive, unique, and intricately constructed by the organism itself. By chance or by choice, organisms adapt the lipid membrane according to the environment for which …


The Novel Chlorination Of Zirconium Metal And Its Application To A Recycling Protocol For Zircaloy Cladding From Spent Nuclear Fuel Rods, Breanna K. Vestal May 2023

The Novel Chlorination Of Zirconium Metal And Its Application To A Recycling Protocol For Zircaloy Cladding From Spent Nuclear Fuel Rods, Breanna K. Vestal

Doctoral Dissertations

A novel protocol has been developed for the chemical removal of zirconium alloy (Zircaloy) cladding from spent nuclear fuel rods and subsequent isolation and purification of nuclear-grade zirconium chloride derived therefrom. This protocol is based on the chemistry developed from two new scientific findings.

First, two new oxidative chlorination reactions have been discovered for zirconium metal. In both solvents, zirconium can be quantitatively chlorinated at temperatures less than 150°C, with the operative equations seen below. In sulfur monochloride, the reaction is completed in 2 – 4 hours via surface etching, exhibiting 0th order kinetic behavior. The elemental sulfur byproduct …


Probing Gas Transport Structure-Property Relationships In Vinyl-Addition Polynorbornenes, Trevor Jonas Wilson May 2023

Probing Gas Transport Structure-Property Relationships In Vinyl-Addition Polynorbornenes, Trevor Jonas Wilson

Doctoral Dissertations

Polynorbornenes are ideal materials for systematic structure-property investigations designed to correlate gas-transport properties to polymer structure. The modular nature of norbornene-derived systems provides a facile route towards the synthesis of diverse polymeric materials, whose structure may be systematically altered through targeted design of monomers, alterations in polymerization mechanism, or some combination of these two strategies. Though many valuable correlations between gas-permeability and polynorbornene structure have been summarized in prior literature, many of these efforts have focused on homopolymer materials with structural changes imposed — almost exclusively — through modifications in substituent chemistry, or through targeted modulation of molar ratios in …


Development Of Artificial Lipids For Metal Ion-Responsive Liposomes And Related Medicinal Applications, Ruhani Sagar May 2023

Development Of Artificial Lipids For Metal Ion-Responsive Liposomes And Related Medicinal Applications, Ruhani Sagar

Doctoral Dissertations

Liposomes are synthetic vesicles made of phospholipids that are effective for wide-ranging applications in drug delivery and studying biological membranes. Understanding and controlling membrane properties such as fluidity and permeability is crucial for designing liposomes for specific biomedical applications. Pathological changes in these properties can also help us gain insights into disease mechanisms and develop effective treatments. In this dissertation, we describe the design, synthesis, and study of several lipid analogs for a range of applications including liposome triggered cargo release and therapeutic treatment related to lipids.

In Chapters 2-3, we developed smart liposome platforms that can respond to changes …


The Development Of Tailored Amphiphilic Copolymers For Detergent-Free Integral Membrane Protein Extraction, Cameron Edward Workman May 2023

The Development Of Tailored Amphiphilic Copolymers For Detergent-Free Integral Membrane Protein Extraction, Cameron Edward Workman

Doctoral Dissertations

Integral membrane proteins are prolific targets for the design, development, and delivery of pharmaceuticals. In fact, over 60% of all currently available drugs target these proteins to accomplish their therapeutic effect. However, integral membrane proteins remain the least characterized class of all proteins, accounting for only ~2% of all solved protein structures. One of the primary reasons for this low number of solved protein structures is that many membrane proteins lose their native conformation when extracted using conventional methods (e.g. detergents), convoluting accurate structure determination. In contrast, amphiphilic styrene-maleic acid copolymers (SMAs) were recently discovered to readily isolate membrane proteins …


Development Of Surface-Modified Liposomes For Drug Delivery Applications, Megan Louise Qualls May 2023

Development Of Surface-Modified Liposomes For Drug Delivery Applications, Megan Louise Qualls

Doctoral Dissertations

Liposomes are spherical vesicles composed of a lipid bilayer membrane that assembles around an internal aqueous core. This duality gives liposomes the ability to encapsulate both hydrophobic cargo within the lipid bilayer and hydrophilic cargo in the aqueous core, making them versatile molecular carriers for drug delivery. Liposome platforms have many advantages and are promising drug delivery carriers, and research is ongoing to improve their designs for continued clinical applications. Many liposome types have been developed, but further work is needed to improve surface modification, site-specific targeting, and triggered cargo release in order to further the therapeutic applications of these …


Electrodeposition Of Epitaxial Wide Bandgap P-Type Semiconductors And Copper Metal For Energy Conversion And Flexible Electronics, Bin Luo Jan 2023

Electrodeposition Of Epitaxial Wide Bandgap P-Type Semiconductors And Copper Metal For Energy Conversion And Flexible Electronics, Bin Luo

Doctoral Dissertations

"Epitaxial electrodeposition is a simple, low-cost technology to produce highly ordered materials on single-crystal surfaces. This research focuses on the epitaxial electrodeposition of wide bandgap p-type semiconductors and epitaxial Cu thin films via a self-assembled monolayer for energy conversion and flexible electronics. Paper I introduces the epitaxial electrodeposition of hole conducting CuSCN nanorods onto Au (111) surface, and lift-off to produce flexible and transparent foils. Highly ordered CuSCN could serve as an inorganic transport layer in various opto-electronic devices such as perovskite solar cells, LEDs, and transistors. An ordered and transparent CuSCN foil was also produced by epitaxial lift-off following …