Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Physical Sciences and Mathematics

Analysis Of Oxidatively Damaged Proteins By Mass Spectrometry, Vincent Saullo Feb 2020

Analysis Of Oxidatively Damaged Proteins By Mass Spectrometry, Vincent Saullo

Electronic Thesis and Dissertation Repository

As humans age, exposure to oxidative stress may induce protein degradation or aggregation; both resulting in loss of protein function. Protein oxidative damage remains a dominant pathology in many common ailments. To combat these pathologies, scientists must understand the nature of oxidative modifications and their effects on protein structure and dynamics. This work employs a range of mass spectrometry (MS) methods to characterize and analyze the effects of oxidative damage on the model protein myoglobin (Mb). Mb was oxidized using tert-butyl hydroperoxide, and the resulting modifications were characterized by top-down and bottom-up MS workflows. Hydrogen/deuterium exchange MS indicated elevated structural …


Saponin Penetration And Interactions With Membranes, Sarai Guerrero Nov 2019

Saponin Penetration And Interactions With Membranes, Sarai Guerrero

Electronic Thesis and Dissertation Repository

The saponin QS21 has been used and studied for years as an adjuvant agent to improve vaccines for both humans and animals. However, how the saponin interacts with the membrane and itself remains poorly understood. We studied the QS21-A majority isomer using all-atom classical molecular dynamics simulations in model bilayers composed of cholesterol and either DOPC or DPPC. As this is one of the few computational studies on QS21-A, we had very few resources to compare our results to. Nevertheless, we were able to gain insight into possible configurations that QS21-A takes after penetration, the effect of the bilayer on …


Development Of In Situ Forming Hydrogels For Intra-Articular Drug Delivery, Andy Prince Feb 2019

Development Of In Situ Forming Hydrogels For Intra-Articular Drug Delivery, Andy Prince

Electronic Thesis and Dissertation Repository

Hydrogels are 3-dimensional crosslinked polymer networks that can absorb significant amounts of water. The physical properties associated with hydrogels affords them resemblance to biological tissues making them good candidates for biomedical applications. Many pharmaceuticals, specifically non-steroidal anti-inflammatory drugs (NSAIDs), have poor aqueous solubility, which limits their bioavailability and efficacy. People suffering from chronic osteoarthritis (OA) are required to frequently take large doses to mitigate pain, which can lead to serious side effects. Hydrogels are good strategies to deliver NSAIDs via articular injection because they can form solid gels in situ. This thesis describes the synthesis, formulation, mechanical testing, in …


Fabrication And Modification Of Titania Nanotube Arrays For Harvesting Solar Energy And Drug Delivery Applications, Ahmed El Ruby Abdel Rahman Mohamed Dec 2017

Fabrication And Modification Of Titania Nanotube Arrays For Harvesting Solar Energy And Drug Delivery Applications, Ahmed El Ruby Abdel Rahman Mohamed

Electronic Thesis and Dissertation Repository

The fast diminishing of fossil fuels in the near future, as well as the global warming caused by increasing greenhouse gases have motivated the urgent quest to develop advanced materials as cost-effective photoanodes for solar light harvesting and many other photocatalytic applications. Recently, titania nanotube arrays (TNTAs) fabricated by anodization process has attracted great interest due to their excellent properties such as: high surface area, vertically oriented, highly organized, one-dimensional, nanotubular structure, photoactivity, chemical stability and biocompatibility. This unique combination of excellent properties makes TNTAs an excellent photoanode for solar light harvesting. However, the relatively wide band gap energy of …


Poly(Ester Amide) And Poly(Ethyl Glyoxylate) Nanoparticles For Controlled Drug Release, Amira Mohamed Moustafa Dec 2014

Poly(Ester Amide) And Poly(Ethyl Glyoxylate) Nanoparticles For Controlled Drug Release, Amira Mohamed Moustafa

Electronic Thesis and Dissertation Repository

The objective of this research was to develop polymeric nanoparticles (NPs) having improved drug release properties for drug delivery. Poly(ester amide)s (PEAs) are promising biodegradable polymers. PEA NPs were prepared via emulsification-evaporation and salting-out methods and optimized through by varying different processing parameters. Polymer-model drug conjugates based on PEAs containing L-aspartic acid and rhodamine B were synthesized and used for NP preparation. Release behavior was studied and compared to a control system with physically encapsulated rhodamine B. It was shown that the release of rhodamine B from the covalent system did not show the burst effect and exhibited a slower …


Synthesis Of Carbohydrate Functionalized Dendrons For Use As Multivalent Scaffold And In Self-Assembled Structures, Namrata Jain Aug 2014

Synthesis Of Carbohydrate Functionalized Dendrons For Use As Multivalent Scaffold And In Self-Assembled Structures, Namrata Jain

Electronic Thesis and Dissertation Repository

Carbohydrates are implicated in a large number of biological processes ranging from cell-cell interactions to bacterial and viral infection. Lectins are carbohydrate-binding proteins that are generally specific for certain sugars. However, typical carbohydrate–lectin interactions tend to have very low monomeric binding affinities. In many cases, the binding of saccharide ligands by protein receptors can be improved significantly through the attachment of multiple saccharide residues to a common support. Dendronized polymers constitute a class of macromolecules whose nanoscale size, rigidity, and functionality can be controlled with precision by tuning their molecular architecture. It is hypothesized that due to their large size …


Optimization Of Chiral Separation Of Nadolol By Simulated Moving Bed Technology, Nesma Nehad Hashem Nov 2012

Optimization Of Chiral Separation Of Nadolol By Simulated Moving Bed Technology, Nesma Nehad Hashem

Electronic Thesis and Dissertation Repository

Simulated Moving Bed (SMB) technology has gained increasing attention as one of the most powerful techniques for chromatographic separations due to its cost-effectiveness and efficiency. Application of SMB technology is especially important in the pharmaceutical industry for production of enantiopure drugs, as required under strict FDA regulations, to avoid possible adverse effects of racemic drugs. In this study, the performance of the SMB process in separation of racemic nadolol on a perphenyl carbamoylated beta cyclodextrin (β-CD) stationary phase was investigated. The equilibrium dispersive model coupled with bi-Langmuir adsorption isotherm and lumped kinetic approximation, constitute the mathematical model used to simulate …


Design And Syntheses Of Fluorescent Cytosine Analogues, David W. Dodd Apr 2011

Design And Syntheses Of Fluorescent Cytosine Analogues, David W. Dodd

Electronic Thesis and Dissertation Repository

The avid hybridization of peptide nucleic acid (PNA) to DNA and RNA along with the molecule’s biological stability has led it to be used in both antisense and antigene capacities. PNA acts against translation via a steric blockade mechanism. It is therefore reasonable to assume that increased heteroduplex stability could lead to increased potency. Two ways of doing this were explored. I) N-Terminal attachment of a platinous chloride chelating moiety to PNA complementary to Xenopus noggin was synthesized with the objective of selective, covalent platination of the target transcript in vivo. Phenotypes consistent with knockdown of the selected …