Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Physical Sciences and Mathematics

Spectroscopic And Kinetic Study Of Copper-Exchanged Zeolites For The Selective Catalytic Reduction Of Nox With Ammonia, Shane Adam Bates Oct 2013

Spectroscopic And Kinetic Study Of Copper-Exchanged Zeolites For The Selective Catalytic Reduction Of Nox With Ammonia, Shane Adam Bates

Open Access Dissertations

The recent application of metal-exchanged, small-pore zeolites for use in the selective catalytic reduction (SCR) of NOx with ammonia NH3 for automotive deNOx applications has been a great stride in achieving emission standard goals. Copper-exchanged SSZ-13 (Cu-SSZ-13), the small-pore zeolite in this study, has been shown to be very hydrothermally stable and active under conditions presented in the exhaust of the lean-burn diesel engine. In this work, detailed studies were performed to identify many aspects of the active site(s) in Cu-SSZ-13 in order to learn about the standard SCR mechanism.

A series of seven Cu-SSZ-13 samples were …


The Effect Of Composition On The Linear And Nonlinear Mechanical Properties Of Particulate Filled Elastomers, Oluwaseyi Ogebule Oct 2013

The Effect Of Composition On The Linear And Nonlinear Mechanical Properties Of Particulate Filled Elastomers, Oluwaseyi Ogebule

Open Access Dissertations

Engineering elastomers are materials capable of undergoing large deformation upon load application and recovering upon load removal. From car tires to building vibration isolator systems, elastomers are the most versatile of engineering materials. The inclusion of particulate fillers into elastomers enhances their mechanical properties (modulus, tensile strength, toughness, tear resistance, etc) thereby extending their applicability to more demanding functions. The automotive, healthcare, construction, adhesives and consumer products are some of the many industries that produce finished goods containing elastomeric parts.

Despite the various concepts on reinforcement in filled elastomers, a complete understanding of their linear viscoelastic properties and the nonlinear …


Elucidation Of Chiral Recognition Mechanisms Of Solutes By Amylose Tris[(S)-Alpha-Methylbenzylcarbamate] Sorbent, Hung-Wei Tsui Oct 2013

Elucidation Of Chiral Recognition Mechanisms Of Solutes By Amylose Tris[(S)-Alpha-Methylbenzylcarbamate] Sorbent, Hung-Wei Tsui

Open Access Dissertations

Enantioselective separations of chiral molecules are important in various chemical fields, such as pharmaceuticals and agrochemicals industries. Polysaccharide-based sorbents have been widely used in chiral liquid chromatography. The recognition mechanisms which determine their enantioselectivities are not completely understood.

In this dissertation, the chiral recognition mechanisms of a widely used commercial sorbent, amylose tris[(S)-alpha-methylbenzylcarbamate], for benzoin (B) enantiomers were first studied. The HPLC data for benzoin with pure n-hexane as the mobile phase have been obtained. The behavior of sorbent-solute-hexane systems can be interpreted by considering only sorbent solute two-component interactions. Infrared (IR) spectra showed evidence of substantial hydrogen bonding (H-bonding) …


Design And Assembly Of Nanostructured Complex Metal Oxide Materials For The Construction Of Batteries And Thermoelectric Devices, Gautam Ganapati Yadav Oct 2013

Design And Assembly Of Nanostructured Complex Metal Oxide Materials For The Construction Of Batteries And Thermoelectric Devices, Gautam Ganapati Yadav

Open Access Dissertations

Thermoelectric devices and lithium-ion batteries are among the fastest growing energy technologies. Thermoelectric devices generate energy from waste heat, whereas lithium-ion batteries store energy for use in commercial applications. Two different topics are bound with a common thread in this thesis - nanotechnology! In fact, nanostructuring is a more preferred term for the approach I have taken herein. Another commonality between these two topics is the material system I have used to prove my hypotheses - complex metal oxides.

Complex metal oxides can be used for both energy generation and storage as they are stable at high temperatures, are benign …


Development Of Quantitative Ft- Ir Methods For Analyzing The Cure Kinetics Of Epoxy Resins, Sang Ha Son Oct 2013

Development Of Quantitative Ft- Ir Methods For Analyzing The Cure Kinetics Of Epoxy Resins, Sang Ha Son

Open Access Dissertations

Epoxy thermosets are important engineering materials with applications in coating, adhesives, packaging and as structural components in a variety of advanced engineering products. The ultimate performance of polymer critically depends upon the details of the cure chemistry used to produce the thermoset. In order to better understand and monitor the cure chemistry, quantitative analysis of the FT-IR response has been developed for describing the epoxy-amine curing reaction as well as monitoring the hydrogen bonding that occurs in these systems The FT-IR analysis includes (i) quantitative deconvolution of complex peaks into individual spectral contributions, (ii) peak identification via DFT analysis and …


Preparation Of Mesoporous Silica Supported Ruthenium Oxides And The Application And Kinetic Study In The Catalysis Of Water Oxidation, Yang Zhang Oct 2013

Preparation Of Mesoporous Silica Supported Ruthenium Oxides And The Application And Kinetic Study In The Catalysis Of Water Oxidation, Yang Zhang

Open Access Dissertations

Photo-induced water splitting of water into H2 and O2 has been a major focus in the development of clean and renewable energy. The development of viable and efficient catalysts that facilitates O2 production remains the major challenge in the study of the corresponding half-reaction of water oxidation. There are plenty of metal oxides reported active in the catalysis of water oxidation. However, several important performance bench marks of those materials, such as the non-stoichiometric production of O2, slow reaction rate and/or low quantum efficiency, remain to be improved.

Ruthenium oxide (RuO2) has long been known as one of the most …


Energy Systems Analysis For A Solar Economy, Dharik Sanchan Mallapragada Oct 2013

Energy Systems Analysis For A Solar Economy, Dharik Sanchan Mallapragada

Open Access Dissertations

The use of solar energy for human needs faces challenges owing to its relatively low energy intensity and intermittent availability, coupled with the constrained availability of renewable carbon and land resources. This study uses systems analysis tools to identify carbon and energy efficient transformations of solar energy for different purposes, including transportation fuels and grid-scale energy storage. These efforts have been complemented with a feasibility analysis of existing fossil-energy and other hybrid pathways.

In an era of limited fossil resources, liquid fuels from sustainably available (SA) biomass could meet the energy needs of the transportation sector. We present a method …


An Analysis Of The Impact Of Storage Temperature, Moisture Content & Duration Upon The Chemical Components & Bioprocessing Of Lignocellulosic Biomass, Arun Athmanathan Oct 2013

An Analysis Of The Impact Of Storage Temperature, Moisture Content & Duration Upon The Chemical Components & Bioprocessing Of Lignocellulosic Biomass, Arun Athmanathan

Open Access Dissertations

The successful utilization of lignocellulosic biomass as a feedstock for fuels and chemicals necessitates storage for 2-6 months. It is correspondingly important to understand the impact of storage parameters - moisture concentration, temperature and duration - on biomass quality.

As aerobic storage is the most viable large-scale solution, aerobic storage experiments were carried out with three projected bioenergy feedstocks - sweet sorghum (Sorghum bicolor) bagasse, corn (Zea mays) stover and switchgrass (Panicum virgatum). Stored samples of each were examined for dry matter loss and composition change to develop a material balance around carbohydrates and lignin.

A mean dry matter loss …