Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 27 of 27

Full-Text Articles in Physical Sciences and Mathematics

Electronic Effect Of Platinum Alloy Catalysts On Olefin Hydrogenation Kinetics, Colin Reedy, Jeff Miller, Stephen Purdy Aug 2018

Electronic Effect Of Platinum Alloy Catalysts On Olefin Hydrogenation Kinetics, Colin Reedy, Jeff Miller, Stephen Purdy

The Summer Undergraduate Research Fellowship (SURF) Symposium

Dehydrogenation of alkanes is the first step in transforming light hydrocarbons into liquid fuels and chemicals. This process has traditionally used platinum alloys as catalysts. Alloys are used industrially because they have a greater selectivity than monometallic platinum. Alloying platinum with an inactive promoter modifies the crystalline structure of the surface (geometric effect), and the 5d electrons in platinum responsible for chemistry (electronic effect); both have been suggested to be primarily responsible for dehydrogenation selectivity in platinum alloys. Alloy catalysts have been synthesized using early 3d transition metal promoters with the same Pt3M crystal structure. X-Ray Absorption Spectroscopy …


Steady-State Method To Measure The In-Plane Thermal Conductivity Of Thin Sheet Materials, Evgeny Pakhomenko, Andrew James Wildridge, Abraham Mathew Koshy, Souvik Das, Andreas Jung Aug 2018

Steady-State Method To Measure The In-Plane Thermal Conductivity Of Thin Sheet Materials, Evgeny Pakhomenko, Andrew James Wildridge, Abraham Mathew Koshy, Souvik Das, Andreas Jung

The Summer Undergraduate Research Fellowship (SURF) Symposium

A new generation of silicon pixel detectors is required to cope with the unprecedented luminosities at the high-luminosity phase of the Large Hadron Collider (HL-LHC) in 2025. The HL-LHC provides a high radiation, high interaction rate environment for the innermost detector region of the CMS detector. This can lead to an uncontrolled increase in temperature of the detector that can destroy the silicon pixels. Moreover, too high operating temperature can add noise to the data obtained from the detector and can slow the read out cheap down. Therefore, the Phase II upgrade to the Compact Muon Solenoid (CMS) experiment requires …


Numerical Simulation Of Residual Stress In Low-Temperature Colossal Carburized Layer On Austenitic Stainless Steel, Dongsong Rong, Yong Jiang, Jianming Gong, Yawei Peng Oct 2016

Numerical Simulation Of Residual Stress In Low-Temperature Colossal Carburized Layer On Austenitic Stainless Steel, Dongsong Rong, Yong Jiang, Jianming Gong, Yawei Peng

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Enabling A Sustainable Economy Through Energy Systems Modeling: Solar-Centric, Efficient, Integrated And Continuous Process Synthesis And Optimization, Emre Gencer Aug 2016

Enabling A Sustainable Economy Through Energy Systems Modeling: Solar-Centric, Efficient, Integrated And Continuous Process Synthesis And Optimization, Emre Gencer

Open Access Dissertations

The expected increase in food, energy and water demand due to increase in population and change in consumption habits in conjunction with diminishing fossil fuel reserves and increasing greenhouse gas emissions urge the development and implementation of alternative energy conversion techniques using renewable energy for a sustainable economy. Among renewable energy sources, solar energy is prominent due to its abundance. A sustainable economy can be created by producing building blocks foundational to meeting all basic human needs of daily existence. However, intermittencies and limitations on land area dedicated to harness solar energy are the major obstacles on widespread implementation of …


Enhancing Silymarin Fractionation Via Molecular Modeling Using The Conductor-Like Screening Model For Real Solvents, Emma C. Brace Aug 2016

Enhancing Silymarin Fractionation Via Molecular Modeling Using The Conductor-Like Screening Model For Real Solvents, Emma C. Brace

Open Access Theses

The market for bio-based products from plant sources is on the rise. There is a global challenge to implement environmentally clean practices for the production of fuels and pharmaceuticals from sustainable resources. A significant hurdle for discovery of comparable plant-derived products is the extensive volume of trial-and-error experimentation required. To alleviate the experimental burden, a quantum mechanics based molecular modeling approach known as the COnductor-like Screening Model for Real Solvents (COSMO-RS) was used to predict the best biphasic solvent system to purify silymarins from an aqueous mixture. Silymarins are a class of flavonolignans present in milk thistle ( Silybum marianum …


Targeted Metabolomics On The Shikimate And Aromatic Amino Acid Biosynthetic Pathways, Robert E. Wheeler Apr 2016

Targeted Metabolomics On The Shikimate And Aromatic Amino Acid Biosynthetic Pathways, Robert E. Wheeler

Open Access Theses

The shikimate and aromatic amino acid biosynthesis pathways are some of the most studied biosynthetic pathways in nature due to their fundamental importance. Interest in this field stems from synthesis of the essential amino acids, tryptophan, tyrosine and phenylalanine. The pathways also are important as generating the precursors of thousands of secondary metabolites and lignin. Inhibiting the pathway has led to discovery of herbicides, pesticides as well as tuberculosis drugs. However there is currently a lack of a comprehensive targeted method for detecting and quantifying the majority of the intermediates in these pathways. Often multiple extraction and detection methods are …


Analysis Of The Fabrication Conditions In Organic Field-Effect Transistors, Rachel M. Rahn, Yan Zhao, Jianguo Mei Aug 2015

Analysis Of The Fabrication Conditions In Organic Field-Effect Transistors, Rachel M. Rahn, Yan Zhao, Jianguo Mei

The Summer Undergraduate Research Fellowship (SURF) Symposium

Polymer-based organic field-effect transistors have raised substantial awareness because they enable low-cost, solution processing techniques, and have the potential to be implemented in flexible, disposable organic electronic devices. The performance of these devices is highly dependent on the processing conditions, as well as the intrinsic properties of the polymer. Processing conditions play an important role in semiconductor film formation and device performance. These factors may provide an important link between structure and performance. In this study, an empirical analysis tool, Process Scout, was applied to assess processing factors such as polymer concentration and silicon modification. This sanctioned the creation of …


Synthesis, Characterization, And Thermoelectric Properties Of Radical Siloxanes, Arnold J. Eng, Bryan Boudouris, Edward P. Tomlinson, Martha Emily Hay Aug 2015

Synthesis, Characterization, And Thermoelectric Properties Of Radical Siloxanes, Arnold J. Eng, Bryan Boudouris, Edward P. Tomlinson, Martha Emily Hay

The Summer Undergraduate Research Fellowship (SURF) Symposium

More than half of the annual energy consumption in the United States is lost as waste heat. Polymer-based thermoelectric devices have the potential to utilize this waste heat both sustainably and cost-effectively. Although conjugated polymers currently dominate research in organic thermoelectrics, the potential of using polymers with radical pendant groups have yet to be realized. These polymers have been found to be as conductive as pristine (i.e., not doped) poly(3-hexylthiophene) (P3HT), a commonly-used charge-transporting conjugated polymer. This could yield promising avenues for thermoelectric material design as radical polymers are more synthetically tunable and are hypothesized to have a high Seebeck …


Effect Of Maleic Acid On The Selectivity Of Glucose And Fructose Dehydration And Degradation, Ximing Zhang Apr 2015

Effect Of Maleic Acid On The Selectivity Of Glucose And Fructose Dehydration And Degradation, Ximing Zhang

Open Access Dissertations

5-Hydroxymethyfurfural (HMF), a platform chemical can upgrade to a variety of fuels and polymers, can be manufactured from lignocellulose. This study focuses on the Lewis and Brønsted acid effect on hexose dehydration for HMF production. We report the positive effect of maleic acid, a dicarboxylic acid used as Brønsted acid, on the selectivity of hexose dehydration to 5-hydroxymethyfurfural (HMF), and subsequent hydrolysis to levulinic and formic acids. We also describe the kinetic analysis of a Lewis acid (AlCl 3) alone and in combination with HCl or maleic acid to catalyze the isomerization of glucose to fructose, dehydration of fructose …


Modeling, Optimization, And Sensitivity Analysis Of A Continuous Multi-Segment Crystallizer For Production Of Active Pharmaceutical Ingredients, Bradley James Ridder Jan 2015

Modeling, Optimization, And Sensitivity Analysis Of A Continuous Multi-Segment Crystallizer For Production Of Active Pharmaceutical Ingredients, Bradley James Ridder

Open Access Dissertations

We have investigated the simulation-based, steady-state optimization of a new type of crystallizer for the production of pharmaceuticals. The multi-segment, multi-addition plug-flow crystallizer (MSMA-PFC) offers better control over supersaturation in one dimension compared to a batch or stirred-tank crystallizer. Through use of a population balance framework, we have written the governing model equations of population balance and mass balance on the crystallizer segments. The solution of these equations was accomplished through either the method of moments or the finite volume method. The goal was to optimize the performance of the crystallizer with respect to certain quantities, such as maximizing the …


Structure-Activity Relationships For The Water-Gas Shift Reaction Over Supported Metal Catalysts, Kaiwalya D. Sabnis Jan 2015

Structure-Activity Relationships For The Water-Gas Shift Reaction Over Supported Metal Catalysts, Kaiwalya D. Sabnis

Open Access Dissertations

The Water-Gas Shift (WGS) reaction (CO + H2O → CO2 + H2) is an important chemical process for industrial hydrogen production. The overall goal of this project is to use kinetic experiments and in situ characterization techniques in tandem, in order to derive structure-activity relationships for various catalytic systems. These relationships facilitate the rational catalyst design by identification of catalyst descriptors. In order to establish such relationships, various studies were undertaken, such as (i) effect of transition admetals on the WGS catalysis by molybdenum carbide (ii) effect of residual oxygen content on the performance of …


Identifying Conditions To Optimize Lactic Acid Production From Food Waste, Raymond M. Redcorn Oct 2014

Identifying Conditions To Optimize Lactic Acid Production From Food Waste, Raymond M. Redcorn

Open Access Theses

There is an increased demand for lactic acid for the production of biopolymers and to aid nutrient removal in wastewater treatment. Food waste offers a source of soluble sugars to produce lactic acid, which does not increase land demand, but digestion conditions have yet to be optimized when co-digested with primary sludge. Food waste was collected from cafeteria waste bins, homogenized and seeded with primary sludge. A Box Behnken Response surface design was used to optimize lactic acid production based on pH, temperature, loading rate, and retention time. Subsequent experiments verified and refined those conditions to optimize for both yield …


Impact Of Nanostructure On Polymer-Based Nonvolatile Memory Devices, Seung Hyun Sung Oct 2014

Impact Of Nanostructure On Polymer-Based Nonvolatile Memory Devices, Seung Hyun Sung

Open Access Theses

Memory functionality is essential for many high-end electronic applications (e.g. , smart phones, personal computers). Particularly, organic nonvolatile memory devices based on polymer ferroelectric materials are a promising approach toward the development of low-cost memory due to the ease of processing and flexibility associated with the device. Here, we will focus on a memory device with a two-component active layer and a diode structure. This ferroelectric diode (FeD) has a nanostructured active layer, composed of ferroelectric and semiconducting polymers, and it can provide easy access to high-performance polymer-based memory devices. In order to create these nanostructured active layers, we …


Correlating Molecular Architecture Of A Radical Polymer Based Copolymer With Its Electrical Transport Properties, Holly Chan Jul 2014

Correlating Molecular Architecture Of A Radical Polymer Based Copolymer With Its Electrical Transport Properties, Holly Chan

Open Access Theses

The design and synthesis of electrically-conductive macromolecules can lead to significant improvements in the performance of polymer-based energy conversion devices (e.g., thermoelectric devices). For these organic electronic devices, conjugated polymers have dominated the area of conductive polymers; however, these materials are usually synthesized using conditions that lead to poorly-defined polymers. Furthermore, in these increasingly-standard polymers, the charge transport ability of the polymer thin films is largely affected by the degree of crystallinity, which is a difficult property to control in a reproducible fashion. Therefore, we seek to explore a new class of amorphous, non-conjugated polymers containing a stable radical …


Preparation & Characterization Of High Purity Cu2 Znsn(Sxse1-X)4 Nanoparticles, Bethlehem G. Negash Jul 2014

Preparation & Characterization Of High Purity Cu2 Znsn(Sxse1-X)4 Nanoparticles, Bethlehem G. Negash

Open Access Theses

Research in thin film solar cells applies novel techniques to synthesize cost effective and highly efficient absorber materials in order to generate electricity directly from solar energy. Of these materials, copper zinc tin sulfoselenide (Cu2ZnSn(SxSe1-x) 4) nanoparticles have shown great promise in solar cell applications due to optimal material properties as well as low cost & relative abundance of materials.1,2 Sulfoselenide nanoparticles have also a broader impact in other industries including electronics3, LED 4, and biomedical research5. Of the many routes of manufacturing these class of semiconductors, …


Fundamental Studies On Copper Zeolites For Catalytic No X Abatement, Anuj Arun Verma Jul 2014

Fundamental Studies On Copper Zeolites For Catalytic No X Abatement, Anuj Arun Verma

Open Access Dissertations

Stringent regulations in mobile NOx emissions have resulted in the development of Standard Selective Catalytic Reduction (SCR) as the dominant NOx abatement technology in lean burn diesel engines. Standard SCR is a reaction of nitric oxide (NO) with ammonia (NH3), in the presence of oxygen (O 2) to form nitrogen (N2) and water (H2O). Copper containing zeolites show commercially viable SCR performance. Cu-SSZ-13 (CHA framework), a member of this family, is a preferred catalyst for SCR applications because it shows exceptional hydrothermal stability in addition to commercially viable SCR performance. Our work focuses …


Cztsse Thin Film Solar Cells : Surface Treatments, Chinmay S. Joglekar Apr 2014

Cztsse Thin Film Solar Cells : Surface Treatments, Chinmay S. Joglekar

Open Access Theses

Chalcopyrite semiconducting materials, specifically CZTS, are a promising alternative to traditional silicon solar cell technology. Because of the high absorption coefficient; films of the order of 1 micrometer thickness are sufficient for the fabrication of solar cells. Liquid based synthesis methods are advantageous because they are easily scalable using the roll to roll manufacturing techniques.

Various treatments are explored in this study to enhance the performance of the selenized CZTS film based solar cells. Thiourea can be used as a sulfur source and can be used to tune band gap of CZTSSe. Bromine etching can be used to manipulate the …


Optimization Of Polymer Separation By Gradient Polymer Elution Chromatography, Gideon R. Liem, Linda Nien-Hwa Wang Oct 2013

Optimization Of Polymer Separation By Gradient Polymer Elution Chromatography, Gideon R. Liem, Linda Nien-Hwa Wang

The Summer Undergraduate Research Fellowship (SURF) Symposium

High Performance Liquid Chromatography (HPLC) has been a versatile separation method for polymers for many years. Analysis of different polymers by HPLC is typically done by utilizing the differential solubility of the polymers by mixing a good solvent and an anti-solvent in various compositions. This method is called Gradient Polymer Elution Chromatography (GPEC). While GPEC has been used extensively, it commonly uses a linear gradient to separate components. Linear solvent gradients consume a lot of solvent and take a relatively long time (> 30 minutes) to complete. The goal of this study is to develop a step gradient from a …


Spectroscopic And Kinetic Study Of Copper-Exchanged Zeolites For The Selective Catalytic Reduction Of Nox With Ammonia, Shane Adam Bates Oct 2013

Spectroscopic And Kinetic Study Of Copper-Exchanged Zeolites For The Selective Catalytic Reduction Of Nox With Ammonia, Shane Adam Bates

Open Access Dissertations

The recent application of metal-exchanged, small-pore zeolites for use in the selective catalytic reduction (SCR) of NOx with ammonia NH3 for automotive deNOx applications has been a great stride in achieving emission standard goals. Copper-exchanged SSZ-13 (Cu-SSZ-13), the small-pore zeolite in this study, has been shown to be very hydrothermally stable and active under conditions presented in the exhaust of the lean-burn diesel engine. In this work, detailed studies were performed to identify many aspects of the active site(s) in Cu-SSZ-13 in order to learn about the standard SCR mechanism.

A series of seven Cu-SSZ-13 samples were …


The Effect Of Composition On The Linear And Nonlinear Mechanical Properties Of Particulate Filled Elastomers, Oluwaseyi Ogebule Oct 2013

The Effect Of Composition On The Linear And Nonlinear Mechanical Properties Of Particulate Filled Elastomers, Oluwaseyi Ogebule

Open Access Dissertations

Engineering elastomers are materials capable of undergoing large deformation upon load application and recovering upon load removal. From car tires to building vibration isolator systems, elastomers are the most versatile of engineering materials. The inclusion of particulate fillers into elastomers enhances their mechanical properties (modulus, tensile strength, toughness, tear resistance, etc) thereby extending their applicability to more demanding functions. The automotive, healthcare, construction, adhesives and consumer products are some of the many industries that produce finished goods containing elastomeric parts.

Despite the various concepts on reinforcement in filled elastomers, a complete understanding of their linear viscoelastic properties and the nonlinear …


Elucidation Of Chiral Recognition Mechanisms Of Solutes By Amylose Tris[(S)-Alpha-Methylbenzylcarbamate] Sorbent, Hung-Wei Tsui Oct 2013

Elucidation Of Chiral Recognition Mechanisms Of Solutes By Amylose Tris[(S)-Alpha-Methylbenzylcarbamate] Sorbent, Hung-Wei Tsui

Open Access Dissertations

Enantioselective separations of chiral molecules are important in various chemical fields, such as pharmaceuticals and agrochemicals industries. Polysaccharide-based sorbents have been widely used in chiral liquid chromatography. The recognition mechanisms which determine their enantioselectivities are not completely understood.

In this dissertation, the chiral recognition mechanisms of a widely used commercial sorbent, amylose tris[(S)-alpha-methylbenzylcarbamate], for benzoin (B) enantiomers were first studied. The HPLC data for benzoin with pure n-hexane as the mobile phase have been obtained. The behavior of sorbent-solute-hexane systems can be interpreted by considering only sorbent solute two-component interactions. Infrared (IR) spectra showed evidence of substantial hydrogen bonding (H-bonding) …


Design And Assembly Of Nanostructured Complex Metal Oxide Materials For The Construction Of Batteries And Thermoelectric Devices, Gautam Ganapati Yadav Oct 2013

Design And Assembly Of Nanostructured Complex Metal Oxide Materials For The Construction Of Batteries And Thermoelectric Devices, Gautam Ganapati Yadav

Open Access Dissertations

Thermoelectric devices and lithium-ion batteries are among the fastest growing energy technologies. Thermoelectric devices generate energy from waste heat, whereas lithium-ion batteries store energy for use in commercial applications. Two different topics are bound with a common thread in this thesis - nanotechnology! In fact, nanostructuring is a more preferred term for the approach I have taken herein. Another commonality between these two topics is the material system I have used to prove my hypotheses - complex metal oxides.

Complex metal oxides can be used for both energy generation and storage as they are stable at high temperatures, are benign …


Development Of Quantitative Ft- Ir Methods For Analyzing The Cure Kinetics Of Epoxy Resins, Sang Ha Son Oct 2013

Development Of Quantitative Ft- Ir Methods For Analyzing The Cure Kinetics Of Epoxy Resins, Sang Ha Son

Open Access Dissertations

Epoxy thermosets are important engineering materials with applications in coating, adhesives, packaging and as structural components in a variety of advanced engineering products. The ultimate performance of polymer critically depends upon the details of the cure chemistry used to produce the thermoset. In order to better understand and monitor the cure chemistry, quantitative analysis of the FT-IR response has been developed for describing the epoxy-amine curing reaction as well as monitoring the hydrogen bonding that occurs in these systems The FT-IR analysis includes (i) quantitative deconvolution of complex peaks into individual spectral contributions, (ii) peak identification via DFT analysis and …


Preparation Of Mesoporous Silica Supported Ruthenium Oxides And The Application And Kinetic Study In The Catalysis Of Water Oxidation, Yang Zhang Oct 2013

Preparation Of Mesoporous Silica Supported Ruthenium Oxides And The Application And Kinetic Study In The Catalysis Of Water Oxidation, Yang Zhang

Open Access Dissertations

Photo-induced water splitting of water into H2 and O2 has been a major focus in the development of clean and renewable energy. The development of viable and efficient catalysts that facilitates O2 production remains the major challenge in the study of the corresponding half-reaction of water oxidation. There are plenty of metal oxides reported active in the catalysis of water oxidation. However, several important performance bench marks of those materials, such as the non-stoichiometric production of O2, slow reaction rate and/or low quantum efficiency, remain to be improved.

Ruthenium oxide (RuO2) has long been known as one of the most …


Energy Systems Analysis For A Solar Economy, Dharik Sanchan Mallapragada Oct 2013

Energy Systems Analysis For A Solar Economy, Dharik Sanchan Mallapragada

Open Access Dissertations

The use of solar energy for human needs faces challenges owing to its relatively low energy intensity and intermittent availability, coupled with the constrained availability of renewable carbon and land resources. This study uses systems analysis tools to identify carbon and energy efficient transformations of solar energy for different purposes, including transportation fuels and grid-scale energy storage. These efforts have been complemented with a feasibility analysis of existing fossil-energy and other hybrid pathways.

In an era of limited fossil resources, liquid fuels from sustainably available (SA) biomass could meet the energy needs of the transportation sector. We present a method …


An Analysis Of The Impact Of Storage Temperature, Moisture Content & Duration Upon The Chemical Components & Bioprocessing Of Lignocellulosic Biomass, Arun Athmanathan Oct 2013

An Analysis Of The Impact Of Storage Temperature, Moisture Content & Duration Upon The Chemical Components & Bioprocessing Of Lignocellulosic Biomass, Arun Athmanathan

Open Access Dissertations

The successful utilization of lignocellulosic biomass as a feedstock for fuels and chemicals necessitates storage for 2-6 months. It is correspondingly important to understand the impact of storage parameters - moisture concentration, temperature and duration - on biomass quality.

As aerobic storage is the most viable large-scale solution, aerobic storage experiments were carried out with three projected bioenergy feedstocks - sweet sorghum (Sorghum bicolor) bagasse, corn (Zea mays) stover and switchgrass (Panicum virgatum). Stored samples of each were examined for dry matter loss and composition change to develop a material balance around carbohydrates and lignin.

A mean dry matter loss …


Potential For Electrical Power Generation Using Forest Wood Biomass In Rural Areas Of Catalonia, Arnau Gonzalez Jan 2013

Potential For Electrical Power Generation Using Forest Wood Biomass In Rural Areas Of Catalonia, Arnau Gonzalez

Open Access Theses

Biomass is a renewable energy source that has been used for many years. However, its usage as an electricity source in Spain is not well developed due to many causes, among which highlights the lack of knowledge about the available technical potential. This research sought to close this gap assessing the technical potential for electricity generation using forest wood biomass in rural areas of Catalonia. The study characterizes the amount and type of biomass available in Catalonian forests that can be used to produce electricity without going beyond the capacity of regeneration of the forest, as well as the state-of-the-art …