Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

A Horizon Decomposition Approach For The Capacitated Lot-Sizing Problem With Setup Times, Ioannis Fragkos, Zeger Degraeve, Bert De Reyck May 2016

A Horizon Decomposition Approach For The Capacitated Lot-Sizing Problem With Setup Times, Ioannis Fragkos, Zeger Degraeve, Bert De Reyck

Research Collection Lee Kong Chian School Of Business

We introduce horizon decomposition in the context of Dantzig-Wolfe decomposition, and apply it to the capacitated lot-sizing problem with setup times. We partition the problem horizon in contiguous overlapping intervals and create subproblems identical to the original problem, but of smaller size. The user has the flexibility to regulate the size of the master problem and the subproblem via two scalar parameters. We investigate empirically which parameter configurations are efficient, and assess their robustness at different problem classes. Our branch-and-price algorithm outperforms state-of-the-art branch-and-cut solvers when tested to a new data set of challenging instances that we generated. Our methodology …


Tesla: An Energy-Saving Agent That Leverages Schedule Flexibility, Jun Young Kwak, Pradeep Varakantham, Rajiv Maheswaran, Burcin Becerik-Gerber, Milind Tambe May 2013

Tesla: An Energy-Saving Agent That Leverages Schedule Flexibility, Jun Young Kwak, Pradeep Varakantham, Rajiv Maheswaran, Burcin Becerik-Gerber, Milind Tambe

Research Collection School Of Computing and Information Systems

This innovative application paper presents TESLA, an agent-based application for optimizing the energy use in commercial buildings. TESLA’s key insight is that adding flexibility to event/meeting schedules can lead to significant energy savings. TESLA provides three key contributions: (i) three online scheduling algorithms that consider flexibility of people’s preferences for energyefficient scheduling of incrementally/dynamically arriving meetings and events; (ii) an algorithm to effectively identify key meetings that lead to significant energy savings by adjusting their flexibility; and (iii) surveys of real users that indicate that TESLA’s assumptions exist in practice. TESLA was evaluated on data of over 110,000 meetings held …