Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Metabolic Engineering Of Cyanobacteria For Production Of Chemicals, Po-Cheng Lin Aug 2019

Metabolic Engineering Of Cyanobacteria For Production Of Chemicals, Po-Cheng Lin

McKelvey School of Engineering Theses & Dissertations

Concerns over the impact of climate change caused by CO2 emission have driven the research and development of renewable energies. Microbial production of chemicals is being viewed as a feasible approach to reduce the use of fossil fuels and minimize the impact of climate change. With recent advances in synthetic biology, microorganisms can be engineered to synthesize petroleum-based chemicals and plant-derived compounds. Cyanobacteria are photosynthetic prokaryotes that use only sunlight, CO2, and trace minerals for growth. Compared to other microbial hosts, cyanobacteria are attractive platforms for sustainable bioproduction, because they can directly convert CO2 into products. However, the major challenge …


Metabolic Engineering Of Cyanobacteria For Production Of Chemicals, Po-Cheng Lin Aug 2019

Metabolic Engineering Of Cyanobacteria For Production Of Chemicals, Po-Cheng Lin

McKelvey School of Engineering Theses & Dissertations

Concerns over the impact of climate change caused by CO2 emission have driven the research and development of renewable energies. Microbial production of chemicals is being viewed as a feasible approach to reduce the use of fossil fuels and minimize the impact of climate change. With recent advances in synthetic biology, microorganisms can be engineered to synthesize petroleum-based chemicals and plant-derived compounds. Cyanobacteria are photosynthetic prokaryotes that use only sunlight, CO2, and trace minerals for growth. Compared to other microbial hosts, cyanobacteria are attractive platforms for sustainable bioproduction, because they can directly convert CO2 into products. However, the major challenge …


Characterizing The Effects Of Environmental Stressors On The Photosynthetic Capacity Of Chlorella Vulgaris, Amanda Louise Smythers Jan 2019

Characterizing The Effects Of Environmental Stressors On The Photosynthetic Capacity Of Chlorella Vulgaris, Amanda Louise Smythers

Theses, Dissertations and Capstones

Chlorella vulgaris is a unicellular green algae grown throughout the world. Due to its multiple trophic modes as well as its ability to maintain high rates of growth under adverse conditions, it has been of global interest for use in ecological contamination studies, biofuel feedstock optimization, and studies of photosynthetic electron transfer. Using a wide-range of methods for physiological and photosynthetic characterization, the studies within seek to further extend the usefulness of C. vulgaris in a variety of environmentally important studies. Once the protocols were optimized specifically for this alga, they could be applied in both ecologically relevant and biodiesel …


Ebullition Of Oxygen From Seagrasses Under Supersaturated Conditions, Matthew H. Long, Kevin Sutherland, Scott D. Wankel, David J. Burdige, Richard C. Zimmerman Jan 2019

Ebullition Of Oxygen From Seagrasses Under Supersaturated Conditions, Matthew H. Long, Kevin Sutherland, Scott D. Wankel, David J. Burdige, Richard C. Zimmerman

OES Faculty Publications

Gas ebullition from aquatic systems to the atmosphere represents a potentially important fraction of primary production that goes unquantified by measurements of dissolved gas concentrations. Although gas ebullition from photosynthetic surfaces has often been observed, it is rarely quantified. The resulting underestimation of photosynthetic activity may significantly bias the determination of ecosystem trophic status and estimated rates of biogeochemical cycling from in situ measures of dissolved oxygen. Here, we quantified gas ebullition rates in Zostera marina meadows in Virginia, U.S.A. using simple funnel traps and analyzed the oxygen concentration and isotopic composition of the captured gas. Maximum hourly rates of …