Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Functional Role Of The N-Terminal Domain In Connexin 46/50 By In Silico Mutagenesis And Molecular Dynamics Simulation, Umair Khan Jun 2021

Functional Role Of The N-Terminal Domain In Connexin 46/50 By In Silico Mutagenesis And Molecular Dynamics Simulation, Umair Khan

University Honors Theses

Connexins form intercellular channels known as gap junctions that facilitate diverse physiological roles, from long-range electrical and chemical coupling to nutrient exchange. Recent structural studies on Cx46 and Cx50 have defined a novel and stable open state and implicated the amino-terminal (NT) domain as a major contributor to functional differences between connexin isoforms. This thesis presents two studies which use molecular dynamics simulations with these new structures to provide mechanistic insight into the function and behavior of the NTH in Cx46 and Cx50. In the first, residues in the NTH that differ between Cx46 and Cx50 are swapped between the …


Steady-State Transmembrane Water Exchange In Proliferating Cultures Of Saccharomyces Cerevisiae, Joseph O'Malley Armstrong May 2021

Steady-State Transmembrane Water Exchange In Proliferating Cultures Of Saccharomyces Cerevisiae, Joseph O'Malley Armstrong

Dissertations and Theses

Cellular water exchange is often considered in terms of a change in volume, where a net flux of water moves across the cell membrane due to a change in osmotic pressure. Osmotic pressure can cause a cell to shrink or swell, however, rapid water exchange persists across the membrane even when the volume of the cell is constant. Steady-state transmembrane water exchange describes the exchange of water across the cell membranes which results in no net change in cell volume. This exchange is astonishingly rapid; the entire pool of intracellular water of a Saccharomyces cerevisiae cell may exchange 2-5 times …


Thermodynamics Of Ligand Binding And Global Structural Stability Of Human Serum Albumin, Matthew Walter Eskew Mar 2021

Thermodynamics Of Ligand Binding And Global Structural Stability Of Human Serum Albumin, Matthew Walter Eskew

Dissertations and Theses

Protein structure is integral to its function. For the past 70 years differential scanning calorimetry has been used to measure protein structural stability. More recently it has been used to study macromolecular interactions. Interactions between proteins and ligands can manifest on differential scanning calorimetry melting curves or thermograms. Utilizing differential scanning calorimetry thermograms to detect or diagnose diseases has been a major goal in disease diagnostics. However, correlating specific ligand-protein interactions, as manifested in a thermogram, with a disease-specific plasma thermogram, has proven elusive.

Modified human serum albumin was utilized to develop a process to capture and retrieve ligands from …