Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology

PDF

Old Dominion University

Series

Mechanism

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Protonic Capacitor: Elucidating The Biological Significance Of Mitochondrial Cristae Formation, James Weifu Lee Jun 2020

Protonic Capacitor: Elucidating The Biological Significance Of Mitochondrial Cristae Formation, James Weifu Lee

Chemistry & Biochemistry Faculty Publications

For decades, it was not entirely clear why mitochondria develop cristae? The work employing the transmembrane-electrostatic proton localization theory reported here has now provided a clear answer to this fundamental question. Surprisingly, the transmembrane-electrostatically localized proton concentration at a curved mitochondrial crista tip can be significantly higher than that at the relatively flat membrane plane regions where the proton-pumping respiratory supercomplexes are situated. The biological significance for mitochondrial cristae has now, for the first time, been elucidated at a protonic bioenergetics level: 1) The formation of cristae creates more mitochondrial inner membrane surface area and thus more protonic capacitance for …


Intensity-Based Skeletonization Of Cryoem Gray-Scale Images Using A True Segmentation-Free Algorithm, Kamal Al Nasr, Chunmei Liu, Mugizi Rwebangira, Legand Burge, Jing He Jan 2013

Intensity-Based Skeletonization Of Cryoem Gray-Scale Images Using A True Segmentation-Free Algorithm, Kamal Al Nasr, Chunmei Liu, Mugizi Rwebangira, Legand Burge, Jing He

Computer Science Faculty Publications

Cryo-electron microscopy is an experimental technique that is able to produce 3D gray-scale images of protein molecules. In contrast to other experimental techniques, cryo-electron microscopy is capable of visualizing large molecular complexes such as viruses and ribosomes. At medium resolution, the positions of the atoms are not visible and the process cannot proceed. The medium-resolution images produced by cryo-electron microscopy are used to derive the atomic structure of the proteins in de novo modeling. The skeletons of the 3D gray-scale images are used to interpret important information that is helpful in de novo modeling. Unfortunately, not all features of the …