Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology

External Link

Select Publications

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Characterization Of A Recently Purified Thermophilic Dnase From A Novel Thermophilic Fungus, Kyle Landry, Robert Levin Jul 2014

Characterization Of A Recently Purified Thermophilic Dnase From A Novel Thermophilic Fungus, Kyle Landry, Robert Levin

Kyle S Landry

A newly isolated thermophilic fungus was found to produce a partially inducible extracellular DNase. This manuscript focuses on the characterization of this novel thermophilic DNase in terms of optimal enzyme conditions, molecular weight, and certain kinetic properties. The DNase was found to be inactivated by the presence of EDTA demonstrating its dependence on metal cofactors for activity. Maximum activity occurred at pH 6.0 with no activity at pH 2.0 or 10.0. The optimal temperature for the purified DNase was 65 °C. The thermophilic DNase was found to be an exonuclease with an estimated molecular weight of 56 kDa.


Development Of A Novel Affinity Membrane Purification System For Deoxyribonuclease, Kyle Landry, Robert Levin Jan 2014

Development Of A Novel Affinity Membrane Purification System For Deoxyribonuclease, Kyle Landry, Robert Levin

Kyle S Landry

A membrane based affinity purification system was developed for the purification of the DNA specific nuclease, DNase I. Single stranded DNA was bound to unmodified polyvinylidene fluoride (PVDF) membranes which were used to purify DNase I from a solution of bovine serum albumin. Using coated membranes, a 6-fold increase in specific activity was achieved with 80 % enzyme recovery. This method provides a simple yet effective way to purify DNase I and can be very useful for the purification of other DNA specific enzymes.