Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology

External Link

Fluorescence Resonance Energy Transfer

Articles 1 - 1 of 1

Full-Text Articles in Physical Sciences and Mathematics

36 Degrees Step Size Of Proton-Driven C-Ring Rotation In Fof1-Atp Synthase, Monika Düser, Nawid Zarrabi, Daniel Cipriano, Stefan Ernst, Gary Glick, Stanley Dunn, Michael Börsch Oct 2012

36 Degrees Step Size Of Proton-Driven C-Ring Rotation In Fof1-Atp Synthase, Monika Düser, Nawid Zarrabi, Daniel Cipriano, Stefan Ernst, Gary Glick, Stanley Dunn, Michael Börsch

Stanley D Dunn

Synthesis of adenosine triphosphate ATP, the 'biological energy currency', is accomplished by F(o)F(1)-ATP synthase. In the plasma membrane of Escherichia coli, proton-driven rotation of a ring of 10 c subunits in the F(o) motor powers catalysis in the F(1) motor. Although F(1) uses 120 degrees stepping during ATP synthesis, models of F(o) predict either an incremental rotation of c subunits in 36 degrees steps or larger step sizes comprising several fast substeps. Using single-molecule fluorescence resonance energy transfer, we provide the first experimental determination of a 36 degrees sequential stepping mode of the c-ring during ATP synthesis.