Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry

Old Dominion University

Series

Nitrogen

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Coastal Upwelling Enhances Abundance Of A Symbiotic Diazotroph (Ucyn-A) And Its Haptophyte Host In The Arctic Ocean, Corday R. Selden, Sveinn V. Einarsson, Kate E. Lowry, Katherine E. Crider, Robert S. Pickart, Peigen Lin, Carin J. Ashjian, P. Dreux Chappell Jan 2022

Coastal Upwelling Enhances Abundance Of A Symbiotic Diazotroph (Ucyn-A) And Its Haptophyte Host In The Arctic Ocean, Corday R. Selden, Sveinn V. Einarsson, Kate E. Lowry, Katherine E. Crider, Robert S. Pickart, Peigen Lin, Carin J. Ashjian, P. Dreux Chappell

OES Faculty Publications

The apparently obligate symbiosis between the diazotroph Candidatus Atelocyanobacterium thalassa (UCYN-A) and its haptophyte host, Braarudosphaera bigelowii, has recently been found to fix dinitrogen (N2) in polar waters at rates (per cell) comparable to those observed in the tropical/subtropical oligotrophic ocean basins. This study presents the novel observation that this symbiosis increased in abundance during a wind-driven upwelling event along the Alaskan Beaufort shelfbreak. As upwelling relaxed, the relative abundance of B. bigelowii among eukaryotic phytoplankton increased most significantly in waters over the upper slope. As the host’s nitrogen demands are believed to be supplied primarily by UCYN-A, …


Biochemical Composition Of Particles And Dissolved Organic Matter Slong An Estuarine Gradient: Sources And Implications For Dom Reactivity, Antonio Mannino, H. Rodger Harvey Jan 2000

Biochemical Composition Of Particles And Dissolved Organic Matter Slong An Estuarine Gradient: Sources And Implications For Dom Reactivity, Antonio Mannino, H. Rodger Harvey

OES Faculty Publications

The chemical composition of high molecular weight dissolved organic matter (DOM) and particulate organic matter (POM) was examined along the salinity gradient of the Delaware Estuary. DOM was collected and fractionated by tangential-flow ultrafiltration into 1-30 kDa (HDOM; high molecular weight) and 30 kDa to 0.2 μm (VHDOM; very high molecular weight) and compared to particles collected in parallel. Polysaccharides comprised 12-43% of particulate organic carbon (POC), 30-56% of VHDOM carbon, and 7.5-19% of HDOM carbon. Hydrolyzable amino acids comprised 17-38% of POC, 5.4-12% of VHDOM carbon, and 1.5-4.2% of HDOM carbon. Only 7-43% of dissolved organic nitrogen in VHDOM …