Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Construction And Performance Optimization Of Bioconjugated Nanosensors For Early Detection Of Breast Cancer And Pro-Inflammatory Diseases, Pooja Gaikwad Sep 2023

Construction And Performance Optimization Of Bioconjugated Nanosensors For Early Detection Of Breast Cancer And Pro-Inflammatory Diseases, Pooja Gaikwad

Dissertations, Theses, and Capstone Projects

In recent years, nanosensors have emerged as a tool with strong potential in medical diagnostics. Single-walled carbon nanotube (SWCNT) based optical nanosensors have notably garnered interest due to the unique characteristics of their near-infrared fluorescence emission, including tissue transparency, photostability, and various chiralities with discrete absorption and fluorescence emission bands. Additionally, the optoelectronic properties of SWCNT are sensitive to the surrounding environment, which makes them suitable for in vitro and in vivo biosensing. Single-stranded (ss) DNA-wrapped SWCNTs have been reported as optical nanosensors for cancers and metabolic diseases. Breast cancer and cardiovascular diseases are the most common causes of death …


Leveraging Antibodies For Positron Emission Tomography And Near-Infrared Fluorescence Imaging Of Cancer, Kimberly C. Fung Feb 2020

Leveraging Antibodies For Positron Emission Tomography And Near-Infrared Fluorescence Imaging Of Cancer, Kimberly C. Fung

Dissertations, Theses, and Capstone Projects

The high specificity and affinity of antibodies make them attractive for developing drugs to diagnose and treat cancer. The overarching goal of this work is to explore the synthesis and use of antibody-based imaging agents in preclinical models of cancer. This work can be described as two-fold. In the first part, we investigated how the use of a glycans-specific bioconjugation strategy affects Fc gamma RI binding and why it results in improved in vivo performance of immunoconjugates. To do so, we used the clinically relevant positron emission tomography (PET) imaging agent, 89Zr-DFO-pertuzumab, in mouse models of human breast cancer. …


Functionalization Of Indium-Based Quantum Dots For Use As A Non-Viral Gene Therapy Vector, Nicholas A. Mundt Aug 2017

Functionalization Of Indium-Based Quantum Dots For Use As A Non-Viral Gene Therapy Vector, Nicholas A. Mundt

MSU Graduate Theses

This work aims to develop functionalized, water-soluble indium-based quantum dots (QDs) as a non-viral gene therapy vector. The QDs were solubilized in water by exchanging native hydrophobic surface ligands with 11-mercaptoundecanioc acid (MUA); an amphiphilic ligand providing terminal carboxylate groups that impart water solubility to the QDs. The aqueous QDs were then functionalized with a terminal tertiary amine to impart a positive surface charge, allowing negatively-charged DNA to complex with the nanoparticles. The QDs were characterized via electrophoresis to determine their ability to bind DNA. Results show that further work is needed to optimize DNA binding. In addition, this work …