Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Atomic, Molecular and Optical Physics

Old Dominion University

Theses/Dissertations

Plasma etching

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Characterization Of Argon And Ar/Cl2 Plasmas Used For The Processing Of Niobium Superconducting Radio-Frequency Cavities, Jeremy J. Peshl Oct 2019

Characterization Of Argon And Ar/Cl2 Plasmas Used For The Processing Of Niobium Superconducting Radio-Frequency Cavities, Jeremy J. Peshl

Physics Theses & Dissertations

The plasma processing of superconducting radio-frequency (SRF) cavities has shown significant promise as a complementary or possible replacement for the current wet etch processes. Empirical relationships between the user-controlled external parameters and the effectiveness of Reactive Ion Etching (RIE) for the removal of surface layers of bulk niobium have been previously established. However, a lack of a physical description of the etching discharge, particularly as the external parameters are varied, limits the development of this technology. A full understanding of how these external parameters affect both the amount of material removed and the physical properties of the plasma would aid …


Plasma Processing Of Superconducting Radio Frequency Cavities, Janardan Upadhyay Apr 2016

Plasma Processing Of Superconducting Radio Frequency Cavities, Janardan Upadhyay

Physics Theses & Dissertations

The development of plasma processing technology of superconducting radio frequency (SRF) cavities not only provides a chemical free and less expensive processing method, but also opens up the possibility for controlled modification of the inner surfaces of the cavity for better superconducting properties. The research was focused on the transition of plasma etching from two dimensional flat surfaces to inner surfaces of three dimensional (3D) structures. The results could be applicable to a variety of inner surfaces of 3D structures other than SRF cavities. Understanding the Ar/Cl2 plasma etching mechanism is crucial for achieving the desired modification of Nb …