Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 16 of 16

Full-Text Articles in Physical Sciences and Mathematics

Simulating Strongly Coupled Many-Body Systems With Quantum Algorithms, Manqoba Qedindaba Hlatshwayo Aug 2023

Simulating Strongly Coupled Many-Body Systems With Quantum Algorithms, Manqoba Qedindaba Hlatshwayo

Dissertations

The complexity of the nuclear many-body problem is a severe obstacle to finding a general and accurate numerical approach needed to simulate medium-mass and heavy nuclei. Even with the advent of exascale classical computing, the impediment of exponential growth of the Hilbert space renders the problem intractable for most classical calculations. In the last few years, quantum algorithms have become an attractive alternative for practitioners because quantum computers are more efficient in simulating quantum physics than classical computers. While a fully fault-tolerant universal quantum computer will not be realized soon, this dissertation explores quantum algorithms for simulating nuclear physics suitable …


Studying The Synthesis Of 196Hg At Astrophysically Relevant Energies Through The Measurement Of Capture Reaction Cross-Sections Of (P, Γ) (P, N) And (P, Α) Reactions, Khushi Bhatt Aug 2022

Studying The Synthesis Of 196Hg At Astrophysically Relevant Energies Through The Measurement Of Capture Reaction Cross-Sections Of (P, Γ) (P, N) And (P, Α) Reactions, Khushi Bhatt

Dissertations

Understanding the origin of all the chemical elements is an important question for the nuclear-astrophysics community. There are many unanswered questions like: What astrophysical events are responsible for the synthesis of what particular chemical elements? How many different elements were made in total? What is the abundance of each synthesized element? etc. Currently, scientists are largely depending upon theory and simulations to define nuclear and astrophysical reaction. This makes it critical to have accurate experimental nuclear physics data to input in astrophysical theoretical models. However, out of more than 20000 reactions involved in these calculations, only a very few are …


Probing The Equation Of State Of Neutron Stars With Heavy Ion Collisions, Om Bhadra Khanal Aug 2022

Probing The Equation Of State Of Neutron Stars With Heavy Ion Collisions, Om Bhadra Khanal

Dissertations

The equation of state (EOS) is a fundamental property of nuclear matter, important for studying the structure of systems as diverse as the atomic nucleus and the neutron star. Nuclear reactions, especially heavy-ion collisions in the laboratories, can produce the nuclear matter similar to those contained in neutron stars. The density and the momentum dependence of the EOS of asymmetric nuclear matter, especially the symmetry energy term, is widely unconstrained. Finding appropriate constrains, especially at higher densities of the nuclear matter, requires the development of new devices, new experimental measurements as well as advances in theoretical understanding of nuclear collisions …


Structural Origin Of Thermal, Mechanical Properties And Morphological Behaviors Of Semiconducting Polymers, Song Zhang May 2021

Structural Origin Of Thermal, Mechanical Properties And Morphological Behaviors Of Semiconducting Polymers, Song Zhang

Dissertations

The past decades have witnessed a surging exploration of semiconducting polymers for the application of wearable and flexible organic electronic devices. Despite the increased amounts of molecular engineered polymers and their much-improved electrical performances, a systematic study of the structure-thermal/mechanical property-morphology relationship of semiconducting polymers is still less investigated.

To understand the thin-film mechanical properties, a pseudo-free standing tensile tester was self-built and utilized to obtain their real-time stress-strain behaviors through uniaxial stretching on top of the water surface. It also enables the first quantitative measurement of fracture energy on ultrathin polymeric films. Through multiple mechanical testing methods (i.e., strain-rate …


High Resolution Near-Infrared/Visible Intracavity Laser Spectroscopy Of Small Molecules, Jack Harms Apr 2019

High Resolution Near-Infrared/Visible Intracavity Laser Spectroscopy Of Small Molecules, Jack Harms

Dissertations

Intracavity laser spectroscopy has been used to study the electronic structure of several small molecules. The molecules studied as part of this dissertation include germanium hydride (GeH), copper oxide (CuO), nickel chloride (NiCl), platinum fluoride (PtF), platinum chloride (PtCl), and copper hydroxide (CuOH). This work encompasses five peer-reviewed publications and two submitted manuscripts.


Computational Modeling Of Radiation Interactions With Molecular Nitrogen, Tyler Reese Dec 2018

Computational Modeling Of Radiation Interactions With Molecular Nitrogen, Tyler Reese

Dissertations

The ability to detect radiation through identifying secondary effects it has on its surrounding medium would extend the range at which detections could be made and would be a valuable asset to many industries. The development of such a detection instrument requires an accurate prediction of these secondary effects. This research aims to improve on existing modeling techniques and help provide a method for predicting results for an affected medium in the presence of radioactive materials. A review of radioactivity and the interactions mechanisms for emitted particles as well as a brief history of the Monte Carlo Method and its …


A Case Study In The Application Of Model-Based Systems Engineering To Laboratory Research Science, Brad Crochet Dec 2017

A Case Study In The Application Of Model-Based Systems Engineering To Laboratory Research Science, Brad Crochet

Dissertations

This dissertation presents an exploration of the application of Model-Based Systems Engineering (MBSE) tools and methods to the design and execution of sophisticated laboratory experiments. An experiment to measure the first excited state diffusion coefficient, recently attempted by the author, is used as an example. Several MBSE analysis methods are applied, retrospectively, to the process by which the experiment in question was planned and executed. The potential for increased efficiency in managing the diverse types of information associated with such laboratory experiments is demonstrated, as well as possible further avenues for future research.


Dielectronic Recombination Calculations For Silicon-Like Ions And The S2+ Orion Nebula Abundance Conundrum, Jagjit Kaur Aug 2017

Dielectronic Recombination Calculations For Silicon-Like Ions And The S2+ Orion Nebula Abundance Conundrum, Jagjit Kaur

Dissertations

Modern astronomical spectroscopy and imaging data are of an unprecedented quality, and span the full electromagnetic spectrum. To take full advantage of these data and successfully model the physical conditions in and elemental abundances of astrophysical plasmas, an accurate and complete description of relevant atomic processes occurring in a wide range of cosmic environments is required. The primary focus of this project is to investigate one of the atomic processes, dielectronic recombination (DR), for the entire silicon-like isoelectronic sequence. Dielectronic recombination is generally the most important contribution to the total recombination rate of atomic ions. This study will serve as …


Time-Dependent Photoionization Of Gaseous Nebulae, Ehab Elsayed Elhoussieny Ahmed Jun 2017

Time-Dependent Photoionization Of Gaseous Nebulae, Ehab Elsayed Elhoussieny Ahmed

Dissertations

We study time-dependent photoionization of gaseous nebulae, i.e. the physical conditions and spectra of astronomical plasmas photoionized by a time-dependent source of ionizing radiation. Our study proceeds in two chief steps: First, we start with a simplified model of plasmas of pure H. Second, we develop a more realistic model of plasmas composed of a mixture of chemical elements. For the first step, we wrote a time-dependent photoionization code (TDP) that solves the coupled system of equations for ionization, energy balance, and radiation transfer in their full time-dependent forms For the second step, we developed a more realistic code (TDXSTAR) …


Electron Transmission Through Micrometer Sized Funnelshaped Tapered Glass Capillaries And Electron Micro-Beam Production, Samanthi Jayamini Wickramarachchi Jun 2015

Electron Transmission Through Micrometer Sized Funnelshaped Tapered Glass Capillaries And Electron Micro-Beam Production, Samanthi Jayamini Wickramarachchi

Dissertations

The prime motivation of this work is to understand the fundamental transmission process of an electron beam through a funnel-shaped capillary taking into account its shape together with the energy, angular and time dependence of the transmitted electrons produce a microsized electron beam. The utilized capillaries had inlet/outlet diameters of 800/16 μm, 800/100 μm and lengths of 35 mm. Considerable transmission of 800 and 1000 eV electrons for tilt angles up to 1.5o and only small transmission for 500 eV electrons was observed for the capillary with the smaller outlet diameter of 16 μm. Incident electrons with energies of …


Modeling Transmission Of Photonic Crystal Waveguide Modes Enhanced By Kerr Nonlinearity, Buddhi M. Rai Aug 2012

Modeling Transmission Of Photonic Crystal Waveguide Modes Enhanced By Kerr Nonlinearity, Buddhi M. Rai

Dissertations

Nonlinear modes of electromagnetic fields propagating in photonic crystal systems have been studied by implementing various computer simulation techniques using electromagnetic theory. The fundamentals of simulation of photonic crystals are analyzed using general purpose methodologies such as the FDTD or PWE methods. Information derived from the underlying physical insights into the systems could be utilized to describe the control mechanisms over the propagation of the modes around impurities in the photonic crystal lattice. The impurities trap the resonantly localized electromagnetic modes having a frequency in a stop band of the photonic crystal, suggesting novel optical controls in the photonic crystal …


Study Of The Structure Of 9C Via Single Neutron Transfer, Scott T. Marley Jun 2012

Study Of The Structure Of 9C Via Single Neutron Transfer, Scott T. Marley

Dissertations

This thesis describes a study of the nucleus 9C, produced in the single-neutron transfer reaction d(10C, t) 9C using a radioactive 10C beam. The structure of the neutron-deficient nucleus 9C is poorly known. Only a few excited states have been observed and no information exists of their single-particle characteristics. The measured ground-state magnetic dipole moment of 9C is anomalously small and could imply large contributions from sd-shell orbitals in the ground-state wave function. The positions of the 9C excited states and their single-particle properties are vital to furthering the …


Electron Transmission Characteristics And The Production Of Narrow Beams Using Glass Optics, Buddhika Senarath Dassanayake Jan 2011

Electron Transmission Characteristics And The Production Of Narrow Beams Using Glass Optics, Buddhika Senarath Dassanayake

Dissertations

Transmission of electrons through an insulating single cylindrically-shaped glass capillary of microscopic dimension has been investigated. Samples made with Borosilicate glass (PYREX 7740) were subjected to bombardment of 300-1000 eV electrons. Transmitted electrons were analyzed using a parallel-plate spectrometer coupled to a channel electron multiplier.

The transmitted electron intensity was found to decrease with increasing sample tilt angle relative to the direction of the primary beam. Two regions of transmission were found: direct where there is no interaction of the beam with the inner capillary wall, and indirect where the beam does interact with the wall. The rate of transmission …


Inelastic X-Ray Scattering Studies In Lithium And Metal Ammonia Solutions, Ayman Hasan Said Jun 2004

Inelastic X-Ray Scattering Studies In Lithium And Metal Ammonia Solutions, Ayman Hasan Said

Dissertations

In this work, inelastic x-ray scattering was used to measure the ionic collective excitations of a metal-ammonia system and the atomic form factor of lithium in a single crystal. For lithium and sodium ammonia systems, the measurements were carried out for different metal concentrations (lithium-ammonia with 2 0 , 16, and 13 mole percent metal [MPM] at T'=240K and sodium-ammonia with 18, 14, and 10 MPM at T=222K). These data were analyzed to determine the acoustic collective excitation dispersion relation and the linewidth. Deviations from the Bohm-Staver model for electron-ion coupling are discussed for the low electronic densities. For the …


Electron Correlation Leading To Double-K-Shell Vacancy Production In Li-Like Ions Colliding With Helium, Ali Sami Alnaser Aug 2002

Electron Correlation Leading To Double-K-Shell Vacancy Production In Li-Like Ions Colliding With Helium, Ali Sami Alnaser

Dissertations

Single and double K-shell vacancies in Li-like ions colliding with neutral helium target have been investigated using high-resolution Auger projectile spectroscopy. Be+, B2+, C3+, and O5+ Li-like ions were produced and accelerated to intermediate-to-high collision velocities where perturbative models are expected to be valid, using the Tandem Van de Graaff accelerator at Western Michigan University. Double-K-shell vacancies in atomic systems or so-called “ hollow ions” can be induced by different mechanism in ion-atom collisions. For intermediate-to-high velocity collisions where the collision time is small, the projectile ion can interact with only one of …


Electron Emission Following The Interaction Of Slow Highly Charged Ions With Solids, Joseph W. Mcdonald Jun 1998

Electron Emission Following The Interaction Of Slow Highly Charged Ions With Solids, Joseph W. Mcdonald

Dissertations

The interaction of highly-charged ions with surfaces involves many excitation processes of the surface atoms and the bulk material. One such process, the emission of electrons from surfaces due to the potential energy of the incident ions has been studied. The experimental results presented here confirm that the majority of electrons emitted as a result of highly-charged ions interacting with a solid surface have energies of about 20 eV. Auger processes contribute a smaller fraction of the total emitted electrons with increasing Z o f the projectile. This contribution to the total electron emission yield is found to be less …