Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physical Sciences and Mathematics

Simultaneous Trapping Of Rubidium And Metastable Argon In A Magneto-Optical Trap, C. I. Sukenik, H. C. Busch Nov 2002

Simultaneous Trapping Of Rubidium And Metastable Argon In A Magneto-Optical Trap, C. I. Sukenik, H. C. Busch

Physics Faculty Publications

We have simultaneously confined rubidium and metastable argon in a dual-species magneto-optical trap (MOT). Here a binary mixture of atomic species from different groups of the periodic table have been optically confined at ultracold temperatures. We describe the apparatus and characterize the individual, single species MOTs and the dual-species MOT. Both fluorescence and ion production are monitored. With both species trapped, we observe ~5106 85Rb atoms and ~2106 40Ar* atoms. Realization of the dual-species trap opens the way for detailed studies of Penning and associative ionization, photoassociative spectroscopy, and eventually for the production of bound, ultracold RbAr molecules.


Decomposition Of Carbon Dioxide In A Capacitively Coupled Radio Frequency Discharge, Thao Hoang Dinh Apr 2002

Decomposition Of Carbon Dioxide In A Capacitively Coupled Radio Frequency Discharge, Thao Hoang Dinh

Physics Theses & Dissertations

Decomposition of CO2 was studied in a capacitively coupled radio frequency discharge using Martian Simulant Gas mixture that contains 95% CO2. The discharge was operated at a gas pressure of 3 to 6 Torr and a discharge power density of less than 2.0 W/cm3. The main mechanism of the CO2 decomposition process is the electron impact dissociation and the rate of the process depends on the electron density, Ne, the concentration of CO2, and the reduced electric field, E/N. A self-consistent model was established to describe the CO …


A Rf Discharge Cell For Saturated Absorption Spectroscopy Of Metastable Argon, C. I. Sukenik, H. C. Busch Feb 2002

A Rf Discharge Cell For Saturated Absorption Spectroscopy Of Metastable Argon, C. I. Sukenik, H. C. Busch

Physics Faculty Publications

We have produced a rf discharge in 40Ar and used saturated absorption spectroscopy to offset lock a Ti:Sapphire laser to the absorption peak of the 43P243D3 cooling transition at 811 nm. We describe the procedure for fabrication of the cell and production of the discharge.


Atomic Hydrogen Cleaning Of Inp(100): Electron Yield And Surface Morphology Of Negative Electron Affinity Activated Surfaces, M. A. Hafez, H. E. Elsayed-Ali Jan 2002

Atomic Hydrogen Cleaning Of Inp(100): Electron Yield And Surface Morphology Of Negative Electron Affinity Activated Surfaces, M. A. Hafez, H. E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

Atomic hydrogen cleaning of the InP(100) surface has been investigated using quantitative reflection high-energy electron diffraction. The quantum efficiency of the surface when activated to negative electron affinity was correlated with surface morphology. The electron diffraction patterns showed that hydrogen cleaning is effective in removing surface contaminants, leaving a clean, ordered, and (2×4)-reconstructed surface. After activation to negative electron affinity, a quantum efficiency of ∼6% was produced in response to photoactivation at 632 nm. Secondary electron emission from the hydrogen-cleaned InP(100)-(2×4) surface was measured and correlated to the quantum efficiency. The morphology of the vicinal InP(100) surface was investigated using …


Electron Pulse Broadening Due To Space Charge Effects In A Photoelectron Gun For Electron Diffraction And Streak Camera Systems, Bao-Liang Qian, Hani E. Elsayed-Ali Jan 2002

Electron Pulse Broadening Due To Space Charge Effects In A Photoelectron Gun For Electron Diffraction And Streak Camera Systems, Bao-Liang Qian, Hani E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

The electron pulse broadening and energy spread, caused by space charge effects, in a photoelectron gun are studied analytically using a fluid model. The model is applicable in both the photocathode-to-mesh region and the postanode electron drift region. It is found that space charge effects in the photocathode-to-mesh region are generally unimportant even for subpicosecond pulses. However, because of the long drift distance, electron pulse broadening due to space charge effects in the drift region is usually significant and could be much larger than the initial electron pulse duration for a subpicosecond electron pulse. Space charge effects can also lead …


Acceleration Element For Femtosecond Electron Pulse Compression, Bao-Liang Qian, Hani E. Elsayed-Ali Jan 2002

Acceleration Element For Femtosecond Electron Pulse Compression, Bao-Liang Qian, Hani E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

An acceleration element is proposed for compressing the electron pulse duration in a femtosecond photoelectron gun. The element is a compact metal cavity with curved-shaped walls. An external voltage is applied to the cavity where a special electric field forms in such a way that the slow electrons in the electron pulse front are accelerated more than the fast electrons, and consequently the electron pulse duration will be compressed. The distribution of the electric field inside the acceleration cavity is analyzed for the geometry of the cavity. The electron dynamics in this acceleration cavity is also investigated numerically. Numerical results …