Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Physical Sciences and Mathematics

Magnetic-Field-Induced Alignment-To-Orientation Conversion In Sodium, G. Schinn, Xianming Han Oct 2015

Magnetic-Field-Induced Alignment-To-Orientation Conversion In Sodium, G. Schinn, Xianming Han

Xianming Han

We report a detailed investigation of excited-state alignment-to-orientation conversion in the presence of an external magnetic field. This counterintuitive phenomenon occurs under intermediate-coupling conditions. A weak, linearly polarized, cw laser beam was used to excite and align the Na 3P3/2 state in an atomic beam along the z direction. The degree of circular polarization of the resulting fluorescence was detected along the z direction as a function of magnetic-field strength. The spectrally integrated transitions originating from individual F levels of the 3S1/2 state yield a maximum circular-polarization fraction of ∼40%; integrating the circular polarization over all the allowed 3S1/2-3P3/2 transitions …


Collision Induced Superfluorescence, A. Kumarakrishnan, Siddharaj Chudasama, Xianming Han Oct 2015

Collision Induced Superfluorescence, A. Kumarakrishnan, Siddharaj Chudasama, Xianming Han

Xianming Han

We have studied superfluorescence (SF) in Ca vapor evolving on the 3d4s3DJ-4s4p3PJ−1 transitions at 1.9 mm by exciting the 4s21S0-4s4p1P1 with a pulsed dye laser. SF is generated following population transfer by spinchanging collisions with an inert gas Ar from the 4s4p1P1 and 3d4s1D2 levels. We show for the first time to our knowledge that the time delay for SF evolution follows the 1/ÎN dependence expected for the case of uniform excitation of the vapor column by collisional transfer. Here, N is the number of participating atoms that was measured directly from the photon yield. The measured photon yield for …


Diamond Growth Reactor Chemistry And Film Nucleation Enhancement Using Chlorinated Hydrocarbons, James Chenault, Charles Feigerle, Xianming Han, Robert Shaw Oct 2015

Diamond Growth Reactor Chemistry And Film Nucleation Enhancement Using Chlorinated Hydrocarbons, James Chenault, Charles Feigerle, Xianming Han, Robert Shaw

Xianming Han

The chemistry of diamond film growth from chlorinated hydrocarbons has been investigated using a hot filament reactor coupled to an orifice sampling mass spectrometer. The relative concentrations of the species present near the growth surface have been determined as a function of filament temperature for dilute mixtures of CH4, CH3Cl, CH2Cl2 and CHCl3 in H2. Mass spectral analysis indicated that chlorinated hydrocarbons are sequentially dechlorinated in the presence of hydrogen at moderate reactor temperatures. A dark film was deposited on all surfaces of the reactor during studies of this dechlorination of CHCl3. Raman analysis indicated that these deposits are small …


Collisional Dynamics Of The First Excited States Of Neon In The 590-670 Nm Region Using Laser Optogalvanic Spectroscopy, Xianming Han, M. Su, C. Haridass, P. Misra Oct 2015

Collisional Dynamics Of The First Excited States Of Neon In The 590-670 Nm Region Using Laser Optogalvanic Spectroscopy, Xianming Han, M. Su, C. Haridass, P. Misra

Xianming Han

A mathematical rate equation model, incorporating the various processes contributing to the generation of optogalvanic signals in a discharge plasma, has been used to analyze the time-resolved waveforms of neon in the wavelength region 590–670 nm. Amplitudes, decay rates and the appropriate instrumental time constant have been determined using a non-linear least-squares fit of the observed time-resolved optogalvanic waveforms.


Investigations Of Superfluorescent Cascades, A. Kumarakrishnan, Xianming Han Oct 2015

Investigations Of Superfluorescent Cascades, A. Kumarakrishnan, Xianming Han

Xianming Han

We report our studies of superfluorescent cascades in atomic calcium which result from two-photon excitation of several levels reasonably close to the ionization limit. We have observed significant conversion efficiencies for some of these transitions which result in subnanosecond pulses particularly in the visible wavelengths. We report the discovery of a novel two-photon scattering mechanism which could prove to be a useful method for determining collisional broadening rates. In addition, a hyper Raman transition near 17 μm is discovered which appears to be a promising candidate for a tunable source.


Production And Diagnosis Of A Highly Spin-Polarized Na Beam, G. Schinn, Xianming Han, A. Gallagher Oct 2015

Production And Diagnosis Of A Highly Spin-Polarized Na Beam, G. Schinn, Xianming Han, A. Gallagher

Xianming Han

We describe optically pumping a beam of sodium atoms to >96% mS and >92% mS, mI state selection. (We have accurately measured the population of every mS, mI state in the optically pumped beam.) For the optical pumping both ground hyperfine states are pumped, using single-mode cw dye-laser radiation tuned to the 3S1/2–3P1/2 transition that is phase modulated in a LiTaO3 crystal to produce first-order sidebands at approximately the 1772-MHz hyperfine splitting of the ground state. The z-directed optical pumping is performed in a z-directed magnetic field of ~5 G. The state-selected atoms then move, in ~1 cm, into an …


Local Heating With Lithographically Fabricated Plasmonic Titanium Nitride Nanoparticles, Urcan Guler, Justus Ndukaife, Gururaj Naik, Agbai Nnanna, Alexander Kildishev, V. Shalaev, Alexandra Boltasseva Jul 2015

Local Heating With Lithographically Fabricated Plasmonic Titanium Nitride Nanoparticles, Urcan Guler, Justus Ndukaife, Gururaj Naik, Agbai Nnanna, Alexander Kildishev, V. Shalaev, Alexandra Boltasseva

U. Guler

Titanium nitride is considered a promising alternative plasmonic material and is known to exhibit localized surface plasmon resonances within the near-infrared biological transparency window. Here, local heating efficiencies of disk-shaped nanoparticles made of titanium nitride and gold are compared in the visible and near-infrared regions numerically and experimentally with samples fabricated using e-beam lithography. Results show that plasmonic titanium nitride nanodisks are efficient local heat sources and outperform gold nanodisks in the biological transparency window, dispensing the need for complex particle geometries.


Accelerating Diffraction-Free Beams In Photonic Lattices, K. Makris, I. Kaminer, Ramy El-Ganainy, N. Efremidis, Zhigang Chen, M. Segev, Demetrios Christodoulides Jun 2015

Accelerating Diffraction-Free Beams In Photonic Lattices, K. Makris, I. Kaminer, Ramy El-Ganainy, N. Efremidis, Zhigang Chen, M. Segev, Demetrios Christodoulides

Ramy El-Ganainy

We study nondiffracting accelerating paraxial optical beams in periodic potentials, in both the linear and the nonlinear domains. In particular, we show that only a unique class of z-dependent lattices can support a true accelerating diffractionless beam. Accelerating lattice solitons, autofocusing beams and accelerating bullets in optical lattices are systematically examined.


Enhancing Optical Isolator Performance In Nonreciprocal Waveguide Arrays, Miguel Levy, Turhan Carroll, Ramy El-Ganainy Jun 2015

Enhancing Optical Isolator Performance In Nonreciprocal Waveguide Arrays, Miguel Levy, Turhan Carroll, Ramy El-Ganainy

Ramy El-Ganainy

We investigate the operation of optical isolators based on magneto-optics waveguide arrays beyond the coupled mode analysis. Semi-vectorial beam propagation simulations demonstrate that evanescent tail coupling and the effects of radiation are responsible for degrading the device’s performance. Our analysis suggests that these effects can be mitigated when the array size is scaled up. In addition, we propose the use of radiation blockers in order to offset some of these effects, and we show that they provide a dramatic improvement in performance. Finally, we also study the robustness of the system with respect to fabrication tolerances using the coupled mode …


Observation Of Accelerating Wannier-Stark Beams In Optically Induced Photonic Lattices, Xinyuan Qi, Konstantinos Makris, Ramy El-Ganainy, Peng Zhang, Jintao Bai, Demetrios Christodoulides, Zhigang Chen Jun 2015

Observation Of Accelerating Wannier-Stark Beams In Optically Induced Photonic Lattices, Xinyuan Qi, Konstantinos Makris, Ramy El-Ganainy, Peng Zhang, Jintao Bai, Demetrios Christodoulides, Zhigang Chen

Ramy El-Ganainy

We generate optical beams analogous to the Wannier–Stark states in semiconductor superlattices and observe that the two main lobes of the WS beams self-bend (accelerate) along two opposite trajectories in a uniform one-dimensional photonic lattice. Such self-accelerating features exist only in the presence of the lattice and are not observed in a homogenous medium. Under the action of nonlinearity, however, the beam structure and acceleration cannot be preserved. Our experimental observations are in qualitative agreement with theoretical predictions.


The Sign Learning Kink (Silk) Based Quantum Monte Carlo (Qmc), Xiaoyao Ma, Frank Loffler, Randall W. Hall, Karol Kowalski, Mark Jarrell, Juana Moreno Dec 2014

The Sign Learning Kink (Silk) Based Quantum Monte Carlo (Qmc), Xiaoyao Ma, Frank Loffler, Randall W. Hall, Karol Kowalski, Mark Jarrell, Juana Moreno

Randall W. Hall

Purpose
The Sign Learning Kink (SiLK) based Quantum Monte Carlo (QMC) method is based on Feynman's path integral formulation of quantum mechanics, and can reduce the minus sign problem when calculating energies in atomic and molecular systems. The code requires as input the one and two electron integrals, which usually are computed using the NWChem package. Example input files are distributed with this package. The code also requires an parameter file, specifying run-time parameters such as input/output directories, or specific code parameters. For all example inputs a corresponding parameter file is distributed as well.

Systems
The code has been tuned …