Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Atmospheric Sciences

Embry-Riddle Aeronautical University

Thermosphere

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

The Dynamics Of Tsunamigenic Acoustic-Gravity Waves And Bathymetry Effect, Pavel Alexandrovich Inchin, Christopher James Heale, Jonathan Brian Snively, Matthew David Zettergren Nov 2022

The Dynamics Of Tsunamigenic Acoustic-Gravity Waves And Bathymetry Effect, Pavel Alexandrovich Inchin, Christopher James Heale, Jonathan Brian Snively, Matthew David Zettergren

Publications

The investigation of atmospheric tsunamigenic acoustic and gravity wave (TAGW) dynamics, from the ocean surface to the thermosphere, is performed through the numerical computations of the 3D compressible nonlinear Navier-Stokes equations. Tsunami propagation is first simulated using a nonlinear shallow water model, which incorporates instantaneous or temporal evolutions of initial tsunami distributions (ITD). Surface dynamics are then imposed as a boundary condition to excite TAGWs into the atmosphere from the ground level. We perform a case study of a large tsunami associated with the 2011 M9.1 Tohuku-Oki earthquake, and parametric studies with simplified and demonstrative bathymetry and ITD. Our results …


On The Short-Term Variability Of Turbulence And Temperature In The Winter Mesosphere, Gerald A. Lehmacher, Aroh Barjatya, Miguel F. Larsen, Richard L. Collins, Boris Strelnikov Aug 2018

On The Short-Term Variability Of Turbulence And Temperature In The Winter Mesosphere, Gerald A. Lehmacher, Aroh Barjatya, Miguel F. Larsen, Richard L. Collins, Boris Strelnikov

Publications

Four mesosphere–lower thermosphere temperature and turbulence profiles were obtained in situ within ∼30 min and over an area of about 100 by 100 km during a sounding rocket experiment conducted on 26 January 2015 at Poker Flat Research Range in Alaska. In this paper we examine the spatial and temporal variability of mesospheric turbulence in relationship to the static stability of the background atmosphere. Using active payload attitude control, neutral density fluctuations, a tracer for turbulence, were observed with very little interference from the payload spin motion, and with high precision (%) at sub-meter resolution. The large-scale vertical temperature structure …


Gravity Wave Heating And Cooling Of The Thermosphere: Sensible Heat Flux And Viscous Flux Of Kinetic Energy, Michael P. Hickey Ph.D., R. L. Walterscheid, G. Schubert Dec 2011

Gravity Wave Heating And Cooling Of The Thermosphere: Sensible Heat Flux And Viscous Flux Of Kinetic Energy, Michael P. Hickey Ph.D., R. L. Walterscheid, G. Schubert

Publications

Total wave heating is the sum of the convergence of the sensible heat flux and the divergence of the viscous flux of wave kinetic energy. Numerical simulations, using a full-wave model of the viscous damping of atmospheric gravity waves propagating in a nonisothermal atmosphere, are carried out to explore the relative contributions of these sources of wave heating as a function of wave properties and altitude. It is shown that the sensible heat flux always dominates in the lower thermosphere, giving a lower region of heating and an upper stronger region of cooling. The heating due to the divergence of …


Physical Processes In Acoustic Wave Heating Of The Thermosphere, G. Schubert, Michael P. Hickey Ph.D., R. L. Walterscheid Apr 2005

Physical Processes In Acoustic Wave Heating Of The Thermosphere, G. Schubert, Michael P. Hickey Ph.D., R. L. Walterscheid

Publications

Upward propagating acoustic waves heat the atmosphere at essentially all heights due to effects of viscous dissipation, sensible heat flux divergence, and Eulerian drift work. Acoustic wave-induced pressure gradient work provides a cooling effect at all heights, but this is overwhelmed by the heating processes. Eulerian drift work and wave-induced pressure gradient work dominate the energy balance, but they nearly cancel at most altitudes, leaving their difference, together with viscous dissipation and sensible heat flux divergence to heat the atmosphere. Acoustic waves are very different from gravity waves which cool the upper atmosphere through the effect of sensible heat flux …