Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Physical Sciences and Mathematics

Comparison Of Coincident Rayleigh-Scatter And Sodium Resonance Lidar Temperature Measurements From The Mesosphere-Lower-Thermosphere Region, Leda Sox, Vincent B. Wickwar, Neal R. Criddle, Tao Yuan Dec 2015

Comparison Of Coincident Rayleigh-Scatter And Sodium Resonance Lidar Temperature Measurements From The Mesosphere-Lower-Thermosphere Region, Leda Sox, Vincent B. Wickwar, Neal R. Criddle, Tao Yuan

All Physics Faculty Presentations

There are relatively few instruments that have the capabilities to make near continuous measurements of the mesosphere-lower-thermosphere (MLT) region. Rayleigh scatter and resonance lidars, particularly sodium resonance lidar, have been the two dominant ground-based techniques for acquiring mesosphere and MLT vertical temperature profiles, respectively, for more than two decades. With these measurements, the dynamics (gravity waves, tides) and long-term temperature trends (upper atmosphere cooling) of the MLT region can be studied. The Utah State University (USU; 41.7º N, 111.8º W) campus hosts a unique upper atmospheric observatory which houses both a high-power, large-aperture Rayleigh lidar and a sodium resonance Doppler …


Comparison Of Coincident Rayleigh-Scatter And Sodium Resonance Lidar Temperature Measurements From The Mesosphere-Lower-Thermosphere Region, Leda Sox, Vincent B. Wickwar, Neal R. Criddle, Tao Yuan Dec 2015

Comparison Of Coincident Rayleigh-Scatter And Sodium Resonance Lidar Temperature Measurements From The Mesosphere-Lower-Thermosphere Region, Leda Sox, Vincent B. Wickwar, Neal R. Criddle, Tao Yuan

All Physics Faculty Publications

There are relatively few instruments that have the capabilities to make near continuous measurements of the mesosphere-lower-thermosphere (MLT) region. Rayleigh scatter and resonance lidars, particularly sodium resonance lidar, have been the two dominant ground-based techniques for acquiring mesosphere and MLT vertical temperature profiles, respectively, for more than two decades. With these measurements, the dynamics (gravity waves, tides) and long-term temperature trends (upper atmosphere cooling) of the MLT region can be studied. The Utah State University (USU; 41.7º N, 111.8º W) campus hosts a unique upper atmospheric observatory which houses both a high-power, large-aperture Rayleigh lidar and a sodium resonance Doppler …


A Coordinated Study Of 1-H Mesoscale Gravity Waves Propagating From Logan To Boulder With Crrl Na Doppler Lidars And Temperature Mapper, Xian Liu, Cao Chen, Wentao Huang, John A. Smith, Xinzhao Chu, Tao Yuan, Pierre-Dominique Pautet, Michael J. Taylor, Jie Gong, Chihoko Y. Cullens Oct 2015

A Coordinated Study Of 1-H Mesoscale Gravity Waves Propagating From Logan To Boulder With Crrl Na Doppler Lidars And Temperature Mapper, Xian Liu, Cao Chen, Wentao Huang, John A. Smith, Xinzhao Chu, Tao Yuan, Pierre-Dominique Pautet, Michael J. Taylor, Jie Gong, Chihoko Y. Cullens

Publications

We present the first coordinated study using two lidars at two separate locations to characterize a 1 h mesoscale gravity wave event in the mesopause region. The simultaneous observations were made with the Student Training and Atmospheric Research (STAR) Na Doppler lidar at Boulder, CO, and the Utah State University Na Doppler lidar and temperature mapper at Logan, UT, on 27 November 2013. The high precision possessed by the STAR lidar enabled these waves to be detected in vertical wind. The mean wave amplitudes are ~0.44 m/s in vertical wind and ~1% in relative temperature at altitudes of 82–107 km. …


Momentum Flux Estimates Accompanying Multi-Scale Gravity Waves Over Mt. Cook, New Zealand On 13 July 2014 During The Deepwave Campaign, Katrina Bossert, David C. Fritts, Pierre-Dominique Pautet, Bifford P. Williams, Michael J. Taylor, Bernd Kaifler, Andrea Dornbrack, Iain M. Reid, Damian J. Murphy, Andrew J. Spargo, Andrew D. Mackinnon Sep 2015

Momentum Flux Estimates Accompanying Multi-Scale Gravity Waves Over Mt. Cook, New Zealand On 13 July 2014 During The Deepwave Campaign, Katrina Bossert, David C. Fritts, Pierre-Dominique Pautet, Bifford P. Williams, Michael J. Taylor, Bernd Kaifler, Andrea Dornbrack, Iain M. Reid, Damian J. Murphy, Andrew J. Spargo, Andrew D. Mackinnon

Publications

Observations performed with a Rayleigh lidar and an Advanced Mesosphere Temperature Mapper aboard the National Science Foundation/National Center for Atmospheric Research Gulfstream V research aircraft on 13 July 2014 during the Deep Propagating Gravity Wave Experiment (DEEPWAVE) measurement program revealed a large-amplitude, multiscale gravity wave (GW) environment extending from ~20 to 90 km on flight tracks over Mount Cook, New Zealand. Data from four successive flight tracks are employed here to assess the characteristics and variability of the larger- and smaller-scale GWs, including their spatial scales, amplitudes, phase speeds, and momentum fluxes. On each flight, a large-scale mountain wave (MW) …


The Online System For Lidar Data Handling And Real Time Monitoring Of Lidar Operations At Alo-Usu, Luis Navarro Dominguez, Vincent B. Wickwar, Jose Gamboa, Marco Milla Jul 2015

The Online System For Lidar Data Handling And Real Time Monitoring Of Lidar Operations At Alo-Usu, Luis Navarro Dominguez, Vincent B. Wickwar, Jose Gamboa, Marco Milla

Conference publications

t is no longer sufficient to use lidar, such as the Rayleigh lidar at the Atmospheric Lidar Observatory (ALO) at Utah State University (USU), to observe the middle atmosphere and reduce the data to geophysical parameters. Extended operations, with inevitable equipment, data reduction, and analysis improvements, require us to keep careful track of all these changes and how they affect the scientific products. Furthermore, many of the funding agencies and the journals now require us to do, at least, some of this. We have built three interconnected data structures to organize and manage the different hardware and software set- ups …


Early Temperatures Observed With The Extremely Sensitive Rayleigh Lidar At Utah State University, Vincent B. Wickwar, Leda Sox, Matthew T. Emerick, Joshua P. Herron, David L. Barton Jul 2015

Early Temperatures Observed With The Extremely Sensitive Rayleigh Lidar At Utah State University, Vincent B. Wickwar, Leda Sox, Matthew T. Emerick, Joshua P. Herron, David L. Barton

Conference publications

Rayleigh-scatter lidar observations were made at the Atmospheric Lidar Observatory (ALO) at Utah State University (USU) from 1993–2004 from 45–90 km. The lidar operated at 532 nm with a power-aperture-product (PAP) of ~3.1 Wm2. The sensitivity of the lidar has since been increased by a factor of 66 to 205 Wm2, extending the maximum altitude into new territory, the lower thermosphere. Observations have been extended up to 115 km, almost to the 120 km goal. Early temperatures from four ~4-week periods starting in June 2014 are presented and discussed. They are compared to each other, to the ALO climatol

Conference …


Temperature Deviations In The Midlatitude Mesosphere During Stratospheric Warmings As Measured With Rayleigh-Scatter Lidar, Leda Sox, Vincent B. Wickwar, Chad Fish, Joshua P. Herron Jul 2015

Temperature Deviations In The Midlatitude Mesosphere During Stratospheric Warmings As Measured With Rayleigh-Scatter Lidar, Leda Sox, Vincent B. Wickwar, Chad Fish, Joshua P. Herron

Conference publications

While mesospheric temperature anomalies associated with Sudden Stratospheric Warmings (SSWs) have been observed extensively in the polar regions, observations of these anomalies at midlatitudes are sparse. The original Rayleigh-scatter lidar that operated at the Atmospheric Lidar Observatory (ALO; 41.7°N, 111.8°W) in the Center for Atmospheric and Space Sciences (CASS) on the campus of Utah State University (USU) collected an extensive set of temperature data for 11 years in the 45–90 km altitude range. This work focuses on the extensive Rayleigh lidar observations made during six major SSW events that occurred between 1993 and 2004, providing a climatological study of the …


Variations In Mesospheric Neutral Densities From Rayleigh Lidar Observations At Utah State University, David L. Barton, Vincent B. Wickwar, Joshua P. Herron, Leda Sox, Luis A. Navarro Jul 2015

Variations In Mesospheric Neutral Densities From Rayleigh Lidar Observations At Utah State University, David L. Barton, Vincent B. Wickwar, Joshua P. Herron, Leda Sox, Luis A. Navarro

Conference publications

A Rayleigh lidar was operated from 1993 to 2004, at the Atmospheric Lidar Observatory (ALO; 41.7°N, 111.8°W) at the Center for Atmospheric and Space Sciences (CASS) on the campus of Utah State University (USU). Observations were carried out on over 900 nights, 729 of which had good data starting at 45 km and going upward toward 90 km. They were reduced for absolute temperatures and relative neutral number densities. The latter at 45 km can be put on an absolute basis by using atmospheric models that go up to at least 45 km. The models’ absolute number densities at 45 …


Satellite Measurements Of Mesospheric Gravity Wave Temperature Variances Over The Andes, Jonathan Pugmire, Michael Taylor, Yucheng Zhao, James M. Russell Iii Jun 2015

Satellite Measurements Of Mesospheric Gravity Wave Temperature Variances Over The Andes, Jonathan Pugmire, Michael Taylor, Yucheng Zhao, James M. Russell Iii

Graduate Student Posters

Utah State University’s Mesospheric Temperature Mapper (MTM) has operated continuously at the Andes Lidar Observatory on Cerro Pachon, Chile (30.3° S, 70.7° S) since August 2009. Its purpose is to quantify gravity wave (GW) activity as observed in OH rotational temperature measurements in the mesosphere at an altitude of ~87 km with a particular interest in investigating short period GWs and their seasonal variability. 5.5 years data to date.

The SABER instrument aboard the TIMED satellite provides complimentary data to measure temperature variances and GW potential energy (PE) to quantify the small-scale GWs propagating up into the mesosphere, and lower …


Horizontal Phase Speed Distribution Of Gravity Waves Observed In Mesospheric Temperature Maps, Ahmad Talaei, Michael J. Taylor, Pierre-Dominique Pautet, Yucheng Zhao, Takashi S. Matsuda, Takuji Nakamura Jun 2015

Horizontal Phase Speed Distribution Of Gravity Waves Observed In Mesospheric Temperature Maps, Ahmad Talaei, Michael J. Taylor, Pierre-Dominique Pautet, Yucheng Zhao, Takashi S. Matsuda, Takuji Nakamura

Graduate Student Posters

The goal of the current work is to develop a method suitable for analyzing the horizontal phase speeds of atmospheric gravity waves from an extensive amount of gravity wave data obtained by the USU Advanced Mesospheric Temperature Mapper (AMTM) from Antarctica. The AMTM is a novel infrared digital imaging system that measures selected emission lines in the mesospheric OH (3,1) band to create intensity and temperature maps of the mesosphere. This analysis builds on the recent work by Matsuda et al 2014 using all-sky intensity data to investigate the horizontal phase speed distribution. In our analyses we applied this technique …


Recent Progress In Mesospheric Gravity Wave Studies Using Nigthglow Imaging System, Michael J. Taylor, William R. Pendleton Jr., Pierre-Dominique Pautet, Yucheng Zhao, Chris Olsen, Hema Karnam Surendra Babu, Amauri F. Medeiros, Hisao Takahashi Feb 2015

Recent Progress In Mesospheric Gravity Wave Studies Using Nigthglow Imaging System, Michael J. Taylor, William R. Pendleton Jr., Pierre-Dominique Pautet, Yucheng Zhao, Chris Olsen, Hema Karnam Surendra Babu, Amauri F. Medeiros, Hisao Takahashi

Publications

A variety of optical remote sensing techniques have now revealed a rich spectrum of wave activity in the upper atmosphere. Many of these perturbations, with periodicities ranging from ~ 5 min to many hours and horizontal scales of a few tens of km to several thousands km, are due to freely propagating atmospheric gravity waves and forced tidal oscillations. Passive optical observations of the spatial and temporal characteristics of these waves in the mesosphere and lower thermosphere (MLT) region ( ~ 80-100 km) are facilitated by several naturally occurring, vertically distinct nightglow layers. This paper describes the use of state-of-the-art …


Coordinated Investigation Of Mid-Latitude Upper Mesospheric Temperature Inversion Layers And The Associated Gravity Wave Forcing By Na Lidar And Advanced Mesospheric Temperature Mapper At Logan, Utah (42°N), Tao Yuan, Pierre-Dominique Pautet, Yucheng Zhao, Xuguang Cai, Neal R. Criddle, Michael J. Taylor, William R. Pendleton Jr. Feb 2015

Coordinated Investigation Of Mid-Latitude Upper Mesospheric Temperature Inversion Layers And The Associated Gravity Wave Forcing By Na Lidar And Advanced Mesospheric Temperature Mapper At Logan, Utah (42°N), Tao Yuan, Pierre-Dominique Pautet, Yucheng Zhao, Xuguang Cai, Neal R. Criddle, Michael J. Taylor, William R. Pendleton Jr.

Publications

Mesospheric inversion layers (MIL) are well studied in the literature but their relationship to the dynamic feature associated with the breaking of atmospheric waves in the mesosphere/lower thermosphere (MLT) region are not well understood. Two strong MIL events (ΔT ~30 K) were observed above 90 km during a 6 day full diurnal cycle Na lidar campaign conducted from 6 August to 13 August Logan, Utah (42°N, 112°W). Colocated Advanced Mesospheric Temperature Mapper observations provided key information on concurrent gravity wave (GW) events and their characteristics during the nighttime observations. The study found both MILs were well correlated with the development …