Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physical Sciences and Mathematics

Identification And Classification Of Stratospheric Sudden Warming Events, Thomas S. Ehrmann Dec 2012

Identification And Classification Of Stratospheric Sudden Warming Events, Thomas S. Ehrmann

Doctoral Dissertations and Master's Theses

Analysis of northern hemisphere stratospheric data from 1978-2011 is used to identify and classify Stratospheric Sudden Warming events. A total of 41 events are identified during this 33 year period, resulting in an average occurrence rate of 1.24 events/year. No significant variation in the rate is observed during the period analyzed. The average temperature increase during an SSW event is 12 K and the average duration is 32 days. Each identified event is classified as either a vortex displacement or split event and the ratio of displacement to split events is found to be 0.86.


An Intense Traveling Airglow Front In The Upper Mesosphere–Lower Thermosphere With Characteristics Of A Bore Observed Over Alice Springs, Australia, During A Strong 2 Day Wave Episode, R. L. Walterscheid, J. H. Hecht, L. J. Galinas, Michael P. Hickey Ph.D., I. M. Reid Nov 2012

An Intense Traveling Airglow Front In The Upper Mesosphere–Lower Thermosphere With Characteristics Of A Bore Observed Over Alice Springs, Australia, During A Strong 2 Day Wave Episode, R. L. Walterscheid, J. H. Hecht, L. J. Galinas, Michael P. Hickey Ph.D., I. M. Reid

Publications

The Aerospace Corporation’s Nightglow Imager observed a large step function change in airglow in the form of a traveling front in the OH Meinel (OHM) and O2 atmospheric (O2A) airglow emissions over Alice Springs, Australia, on 2 February 2003. The front exhibited nearly a factor of 2 stepwise increase in the OHM brightness and a stepwise decrease in the O2A brightness. There was significant (~25 K) cooling behind the airglow fronts. The OHM airglow brightness behind the front was among the brightest for Alice Springs that we have measured in 7 years of observations. The event was associated with a …


Ionospheric Signatures Of Tohoku-Oki Tsunami Of March 11, 2011: Model Comparisons Near The Epicenter, David A. Galvan, Attila Komjathy, Michael P. Hickey, Philip Stephens, Jonathan Snively, Y. Tony Song, Mark D. Butala, Anthony J. Mannucci Jul 2012

Ionospheric Signatures Of Tohoku-Oki Tsunami Of March 11, 2011: Model Comparisons Near The Epicenter, David A. Galvan, Attila Komjathy, Michael P. Hickey, Philip Stephens, Jonathan Snively, Y. Tony Song, Mark D. Butala, Anthony J. Mannucci

Publications

We observe ionospheric perturbations caused by the Tohoku earthquake and tsunami of March 11, 2011. Perturbations near the epicenter were found in measurements of ionospheric total electron content (TEC) from 1198 GPS receivers in the Japanese GEONET network. For the first time for this event, we compare these observations with the estimated magnitude and speed of a tsunami-driven atmospheric gravity wave, using an atmosphere-ionosphere-coupling model and a tsunami model of sea-surface height, respectively. Traveling ionospheric disturbances (TIDs) were observed moving away from the epicenter at approximate speeds of 3400 m/s, 1000 m/s and 200–300 m/s, consistent with Rayleigh waves, acoustic …


Ionospheric Plasma Transport And Loss In Auroral Downward Current Regions, M. Zettergren, J. L. Semeter Jun 2012

Ionospheric Plasma Transport And Loss In Auroral Downward Current Regions, M. Zettergren, J. L. Semeter

Publications

A detailed study of the effects of auroral current systems on thermal ionospheric plasma transport and loss is conducted using a new ionospheric model. The mathematical formulation of the model is a variation on the 5‐moment approximation which describes the temporal evolution of density, drift, and temperature for five different ion species in two spatial dimensions. The fluid system is closed through a 2‐D electrostatic treatment of the auroral currents. This model is used to examine the interplay between ion heating, perpendicular transport, molecular ion generation, and type‐1 ion upflows in a self‐consistent way for the first time. Simulations confirm …


Gravity Wave Propagation In A Diffusively Separated Gas: Effects On The Total Gas, Michael P. Hickey Ph.D., R. L. Walterscheid May 2012

Gravity Wave Propagation In A Diffusively Separated Gas: Effects On The Total Gas, Michael P. Hickey Ph.D., R. L. Walterscheid

Publications

We present a full-wave model that simulates acoustic-gravity wave propagation in a binary-gas mixture of atomic oxygen and molecular nitrogen, including molecular viscosity and thermal conductivity appropriately partitioned between the two gases. Compositional effects include the collisional transfer of heat and momentum by mutual diffusion between the two gases. An important result of compositional effects is that the velocity and temperature summed over species can be significantly different from the results of one-gas models with the same height dependent mean molecular weight (M(z)). We compare the results of our binary-gas model to two one-gas full-wave models: one where M is …


Gravity-Wave-Induced Variations In Exothermic Heating In The Low-Latitude, Equinox Mesophere And Lower Thermosphere Region, Michael P. Hickey Ph.D., Tai-Yin Huang Feb 2012

Gravity-Wave-Induced Variations In Exothermic Heating In The Low-Latitude, Equinox Mesophere And Lower Thermosphere Region, Michael P. Hickey Ph.D., Tai-Yin Huang

Publications

We investigate gravity-wave-induced variations in exothermic heating in the OH nightglow region at a latitude of 18° in the Northern and Southern Hemispheres during March. An OH nightglow chemistry model with gravity wavefields from a spectral full-wave model is used for the investigation. Our simulation results show that the wave packet induces a large secular increase in the number densities of the minor species involved in the OH chemistry, a 50% increase in O3, 42% in O, and 29% in OH (v= 8), and the ultimate driver for these increases is the wave-driven downward transport of O. We find that …


Detecting Ionospheric Tec Perturbations Caused By Natural Hazards Using A Global Network Of Gps Receivers: The Tohoku Case Study, A. Komjathy, D. A. Galvan, P. Stephens, M. D. Butala, V. Akopian, B. Wilson, O. Verkhoglyadova, A. J. Mannucci, M. Hickey Jan 2012

Detecting Ionospheric Tec Perturbations Caused By Natural Hazards Using A Global Network Of Gps Receivers: The Tohoku Case Study, A. Komjathy, D. A. Galvan, P. Stephens, M. D. Butala, V. Akopian, B. Wilson, O. Verkhoglyadova, A. J. Mannucci, M. Hickey

Physical Sciences - Daytona Beach

Recent advances in GPS data processing have demonstrated that ground-based GPS receivers are capable of detecting ionospheric TEC perturbations caused by surface-generated Rayleigh, acoustic and gravity waves. There have been a number of publications discussing TEC perturbations immediately following the M 9.0 Tohoku earthquake in Japan on March 11, 2011. Most investigators have focused on the ionospheric responses up to a few hours following the earthquake and tsunami. In our research, in addition to March 11, 2011 we investigate global ionospheric TEC perturbations a day before and after the event. We also compare indices of geomagnetic activity on all three …