Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Physical Sciences and Mathematics

The Planets, Reimagined: Translating Science Into Music, Kaitlyn Wincup Dec 2022

The Planets, Reimagined: Translating Science Into Music, Kaitlyn Wincup

Honors Projects

Inspired by Gustav Holst’s The Planets, this project analyzed the qualitative properties of the planets in our Solar System and translated them into a composition, created by Connor Gibbs, to represent an overall aural depiction of each planet. Where Holst created an astrological depiction of each of the planets, this piece is an astronomical depiction that broadens the perspectives of its listeners.


Generating Light Curves From Simulated Active Galactic Nuclei Data, William Yuan Aug 2022

Generating Light Curves From Simulated Active Galactic Nuclei Data, William Yuan

Undergraduate Student Research Internships Conference

Active Galactic Nuclei (AGN) are growing supermassive black holes found at the centers of massive galaxies. My research involves gathering data by simulating the light emitted by AGN, and then plotting the simulated light in the form of light curves.


Where Are The Habitable Planets In Our Local Group Of Galaxies?, William C. Windsor Aug 2022

Where Are The Habitable Planets In Our Local Group Of Galaxies?, William C. Windsor

Undergraduate Student Research Internships Conference

No abstract provided.


Using Nasa's Tess Mission To Search For Extremely Low Mass White Dwarf Stars, Corinna Peña May 2022

Using Nasa's Tess Mission To Search For Extremely Low Mass White Dwarf Stars, Corinna Peña

Undergraduate Honors Thesis Collection

Extremely low-mass white dwarf stars (ELM) are white dwarf stars with a mass lower than 0.45 solar masses that could not have evolved through normal processes within the lifetime of our universe. Therefore, these objects can only be created through a common envelope phase or a stable Roche lobe overflow while in a binary. These objects have periods between a few minutes to a few hours, so they are very short lived which makes them very rare. My goal for this project was to find these ELM stars by using NASA's Transiting Exoplanet Survey Satellite (TESS) data. I analyzed this …


Electromagnetic Detectability Of Binary Supermassive Black Holes, Kaylee Grace May 2022

Electromagnetic Detectability Of Binary Supermassive Black Holes, Kaylee Grace

Honors Scholar Theses

Supermassive black hole (SMBH) binaries can be produced by galaxy mergers and are important sources of gravitational waves. Although several binary candidates have been identified in previous work, none have yet been fully confirmed. These pairs are difficult to detect, since single accreting SMBHs can have pseudo-periodic lightcurves due to stochastic noise that can mimic the signature of binary SMBHs. The aforementioned lightcurves are the detections we classify as ”false-positive.” The Vera Rubin Observatory (VRO) will be a powerful new tool for detecting binary SMBHs. We determine the false-positive binary detection rate for VRO by attempting to recover sinusoidal binary …


Physical Properties Of Brackett Emitters In The Apogee Dr17 Catalog, Elliott Khilfeh, Hunter Campbell, Kevin R. Covey, Marina Kounkel, Richard Ballentyne Apr 2022

Physical Properties Of Brackett Emitters In The Apogee Dr17 Catalog, Elliott Khilfeh, Hunter Campbell, Kevin R. Covey, Marina Kounkel, Richard Ballentyne

WWU Honors College Senior Projects

In the process of accumulating mass (accretion), young stars channel ionized gas from the protoplanetary disk to the stellar surface along magnetic field lines. Upon impacting the photosphere, the gas cools down, recombining and emitting hydrogen spectral lines. Measuring these emission lines allows us to determine the temperature and density of the gas in those accretion streams. This then enables us to test whether those parameters depend on the accretion rate. We present measurements of equivalent widths and line ratios for Brackett (Br) 11 – 20 lines for 3366 observations of 940 pre-main sequence stars observed with APOGEE as of …


Dr. Jennifer Hoffman, Anit Tyagi Jan 2022

Dr. Jennifer Hoffman, Anit Tyagi

DU Undergraduate Research Journal Archive

An interview with Dr. Jennifer Hoffman.


Characterizing Agn Influence On The Calculated Metallicities Of Adjacent Star-Forming Spaxels, Aidan Khelil Jan 2022

Characterizing Agn Influence On The Calculated Metallicities Of Adjacent Star-Forming Spaxels, Aidan Khelil

Honors Papers

In this thesis, I introduce a method to identify and characterize the effects of active galactic nuclei (AGN) on the spectra of nearby star-forming regions. I analyze spatially-resolved areas of galaxies called “spaxels” within Data Release 15 of the Sloan Digital Sky Survey (SDSS) with the goal of locating those which are physically close to AGN. I find those spaxels with calculated metallicities which lie adjacent to AGN-flagged spaxels and characterize their metallicity values relative to the spaxels which are not adjacent to AGN-flagged spaxels, using a total of 11 separate metallicity calibrations. I find that the current methods to …


Deeply Learning Deep Inelastic Scattering Kinematics, Markus Diefenthaler, Abdullah Farhat, Andrii Verbytskyi, Yuesheng Xu Jan 2022

Deeply Learning Deep Inelastic Scattering Kinematics, Markus Diefenthaler, Abdullah Farhat, Andrii Verbytskyi, Yuesheng Xu

Mathematics & Statistics Faculty Publications

We study the use of deep learning techniques to reconstruct the kinematics of the neutral current deep inelastic scattering (DIS) process in electron–proton collisions. In particular, we use simulated data from the ZEUS experiment at the HERA accelerator facility, and train deep neural networks to reconstruct the kinematic variables Q2 and x. Our approach is based on the information used in the classical construction methods, the measurements of the scattered lepton, and the hadronic final state in the detector, but is enhanced through correlations and patterns revealed with the simulated data sets. We show that, with the appropriate selection …


Impact Of Radio Frequency Interference And Real-Time Spectral Kurtosis Mitigation, Evan T. Smith Jan 2022

Impact Of Radio Frequency Interference And Real-Time Spectral Kurtosis Mitigation, Evan T. Smith

Graduate Theses, Dissertations, and Problem Reports

We catalog the ubiquity of Radio Frequency Interference (RFI) plaguing every modern radio telescope and investigate several ways to mitigate it in order to create better science-ready data products for astronomers. There are a myriad of possible RFI sources, including satellite uplinks and downlinks, cellular communications, air traffic radar, and natural sources such as lightning. Real-time RFI mitigation strategies must take these RFI characteristics into account, as the interfering signals can look significantly different at very high time and frequency resolutions.

We examine Spectral Kurtosis (SK) as a real-time statistical RFI detection method, and compare its flagging efficacy against simulated …