Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Astrophysics and Astronomy

2020

LIGO

Physics and Astronomy Faculty Publications and Presentations

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Improving The Robustness Of The Advanced Ligo Detectors To Earthquakes, Eyal Schwartz, A. Pele, J. Warner, B. Lantz, Joseph Betzwieser, K. L. Dooley, S. Biscans, K. E. Ramirez Nov 2020

Improving The Robustness Of The Advanced Ligo Detectors To Earthquakes, Eyal Schwartz, A. Pele, J. Warner, B. Lantz, Joseph Betzwieser, K. L. Dooley, S. Biscans, K. E. Ramirez

Physics and Astronomy Faculty Publications and Presentations

Teleseismic, or distant, earthquakes regularly disrupt the operation of ground–based gravitational wave detectors such as Advanced LIGO. Here, we present EQ mode, a new global control scheme, consisting of an automated sequence of optimized control filters that reduces and coordinates the motion of the seismic isolation platforms during earthquakes. This, in turn, suppresses the differential motion of the interferometer arms with respect to one another, resulting in a reduction of DARM signal at frequencies below 100 mHz. Our method greatly improved the interferometers' capability to remain operational during earthquakes, with ground velocities up to 3.9 μm s−1 rms …


Properties And Astrophysical Implications Of The 150 M ⊙ Binary Black Hole Merger Gw190521, R. Abbott, T. D. Abbott, A. Aich, G. Bissenbayeva, Teviet Creighton, Mario C. Diaz, S. Mukherjee, V. Quetschke, Malik Rakhmanov, K. E. Ramirez, P. K. Roy, W. H. Wang, A. K. Zadrozny Sep 2020

Properties And Astrophysical Implications Of The 150 M ⊙ Binary Black Hole Merger Gw190521, R. Abbott, T. D. Abbott, A. Aich, G. Bissenbayeva, Teviet Creighton, Mario C. Diaz, S. Mukherjee, V. Quetschke, Malik Rakhmanov, K. E. Ramirez, P. K. Roy, W. H. Wang, A. K. Zadrozny

Physics and Astronomy Faculty Publications and Presentations

The gravitational-wave signal GW190521 is consistent with a binary black hole (BBH) merger source at redshift 0.8 with unusually high component masses, M ⊙ and M ⊙, compared to previously reported events, and shows mild evidence for spin-induced orbital precession. The primary falls in the mass gap predicted by (pulsational) pair-instability supernova theory, in the approximate range 65–120 M ⊙. The probability that at least one of the black holes in GW190521 is in that range is 99.0%. The final mass of the merger ( M ⊙) classifies it as an intermediate-mass black hole. Under the assumption of a quasi-circular …