Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 41

Full-Text Articles in Physical Sciences and Mathematics

The Nanograv 12.5 Yr Data Set: Observations And Narrowband Timing Of 47 Millisecond Pulsars, Md F. Alam, Zaven Arzoumanian, Paul T. Baker, Harsha Blumer, Keith E. Bohler, Keeisi Caballero, Richard S. Camuccio, Yhamil Garcia Dec 2020

The Nanograv 12.5 Yr Data Set: Observations And Narrowband Timing Of 47 Millisecond Pulsars, Md F. Alam, Zaven Arzoumanian, Paul T. Baker, Harsha Blumer, Keith E. Bohler, Keeisi Caballero, Richard S. Camuccio, Yhamil Garcia

Physics and Astronomy Faculty Publications and Presentations

We present time-of-arrival (TOA) measurements and timing models of 47 millisecond pulsars observed from 2004 to 2017 at the Arecibo Observatory and the Green Bank Telescope by the North American Nanohertz Observatory for Gravitational Waves (NANOGrav). The observing cadence was three to four weeks for most pulsars over most of this time span, with weekly observations of six sources. These data were collected for use in low-frequency gravitational wave searches and for other astrophysical purposes. We detail our observational methods and present a set of TOA measurements, based on "narrowband" analysis, in which many TOAs are calculated within narrow radio-frequency …


Improving The Robustness Of The Advanced Ligo Detectors To Earthquakes, Eyal Schwartz, A. Pele, J. Warner, B. Lantz, Joseph Betzwieser, K. L. Dooley, S. Biscans, K. E. Ramirez Nov 2020

Improving The Robustness Of The Advanced Ligo Detectors To Earthquakes, Eyal Schwartz, A. Pele, J. Warner, B. Lantz, Joseph Betzwieser, K. L. Dooley, S. Biscans, K. E. Ramirez

Physics and Astronomy Faculty Publications and Presentations

Teleseismic, or distant, earthquakes regularly disrupt the operation of ground–based gravitational wave detectors such as Advanced LIGO. Here, we present EQ mode, a new global control scheme, consisting of an automated sequence of optimized control filters that reduces and coordinates the motion of the seismic isolation platforms during earthquakes. This, in turn, suppresses the differential motion of the interferometer arms with respect to one another, resulting in a reduction of DARM signal at frequencies below 100 mHz. Our method greatly improved the interferometers' capability to remain operational during earthquakes, with ground velocities up to 3.9 μm s−1 rms …


Structural Evolution And Magnetic Properties Of Gd2hf2o7 Nanocrystals: Computational And Experimental Investigations, Madhab Pokhrel, N. Dimakis, Gamage Chamath Dannangoda, Santosh K. Gupta, Karen S. Martirosyan, Yuanbing Mao Oct 2020

Structural Evolution And Magnetic Properties Of Gd2hf2o7 Nanocrystals: Computational And Experimental Investigations, Madhab Pokhrel, N. Dimakis, Gamage Chamath Dannangoda, Santosh K. Gupta, Karen S. Martirosyan, Yuanbing Mao

Physics and Astronomy Faculty Publications and Presentations

Structural evolution in functional materials is a physicochemical phenomenon, which is important from a fundamental study point of view and for its applications in magnetism, catalysis, and nuclear waste immobilization. In this study, we used x-ray diffraction and Raman spectroscopy to examine the Gd2Hf2O7 (GHO) pyrochlore, and we showed that it underwent a thermally induced crystalline phase evolution. Superconducting quantum interference device measurements were carried out on both the weakly ordered pyrochlore and the fully ordered phases. These measurements suggest a weak magnetism for both pyrochlore phases. Spin density calculations showed that the Gd3+ …


Gravitational-Wave Constraints On The Equatorial Ellipticity Of Millisecond Pulsars, R. Abbott, T. D. Abbott, S. Abraham, F. Acernese, K. Ackley, Teviet Creighton, Mario C. Diaz, S. Mukherjee, V. Quetschke, Malik Rakhmanov, K. E. Ramirez, W. H. Wang Oct 2020

Gravitational-Wave Constraints On The Equatorial Ellipticity Of Millisecond Pulsars, R. Abbott, T. D. Abbott, S. Abraham, F. Acernese, K. Ackley, Teviet Creighton, Mario C. Diaz, S. Mukherjee, V. Quetschke, Malik Rakhmanov, K. E. Ramirez, W. H. Wang

Physics and Astronomy Faculty Publications and Presentations

We present a search for continuous gravitational waves from five radio pulsars, comprising three recycled pulsars (PSR J0437−4715, PSR J0711−6830, and PSR J0737−3039A) and two young pulsars: the Crab pulsar (J0534+2200) and the Vela pulsar (J0835−4510). We use data from the third observing run of Advanced LIGO and Virgo combined with data from their first and second observing runs. For the first time we are able to match (for PSR J0437−4715) or surpass (for PSR J0711−6830) the indirect limits on gravitational-wave emission from recycled pulsars inferred from their observed spin-downs, and constrain their equatorial ellipticities to be less than 10−8 …


Interplay Of Quantum Phase Transition And Flat Band In Hybrid Lattices, Gui-Lei Zhu, Hamidreza Ramezani, Clive Emary, Jin-Hua Gao, Ying Wu, Xin-You Lü Sep 2020

Interplay Of Quantum Phase Transition And Flat Band In Hybrid Lattices, Gui-Lei Zhu, Hamidreza Ramezani, Clive Emary, Jin-Hua Gao, Ying Wu, Xin-You Lü

Physics and Astronomy Faculty Publications and Presentations

We establish a connection between quantum phase transitions (QPTs) and energy band theory in an extended Dicke-Hubbard lattice, where the periodical critical curves modulated by wave number k leads to rich equilibrium dynamics. Interestingly, the chiral-symmetry-protected flat band and the localization that it engenders exclusively occurs in the normal phase and disappears in the superradiant phase. This originates from the QPT induced simultaneous breaking up of the on-site resonance condition and off-site chiral symmetry of the system, which prohibits the destructive interference for obtaining a flat band. Our work offers an approach to identify different phases of the lattice via …


Optical Study Of Pks B1322-110, The Intra-Hour Variable Radio Source, Juan P. Madrid, Artem V. Tuntsov, Mischa Schirmer, Mark A. Walker, Carlos J. Donzelli, Keith W. Bannister, Hayley E. Bignall, Jamie Stevens, Cormac Reynolds, Simon Johnston Sep 2020

Optical Study Of Pks B1322-110, The Intra-Hour Variable Radio Source, Juan P. Madrid, Artem V. Tuntsov, Mischa Schirmer, Mark A. Walker, Carlos J. Donzelli, Keith W. Bannister, Hayley E. Bignall, Jamie Stevens, Cormac Reynolds, Simon Johnston

Physics and Astronomy Faculty Publications and Presentations

Observations with the Australia Telescope Compact Array revealed intra-hour variations in the radio source PKS B1322-110 (Bignall et al. 2019). As part of an optical follow-up, we obtained Gemini Hα and Hα continuum (HαC) images of the PKS B1322-110 field. A robust 19 σ detection of PKS B1322- 110 in the Hα−HαC image prompted us to obtain the first optical spectrum of PKS B1322-110. With the Gemini spectrum we determine that PKS B1322-110 is a flat-spectrum radio quasar at a redshift of z = 3.007 ± 0.002. The apparent flux detected in the Hα filter is likely to originate from …


Sensitivity And Performance Of The Advanced Ligo Detectors In The Third Observing Run, A. Buikema, C. Cahillane, G. L. Mansell, C. D. Blair, R. Abbott, C. Adams, R. Adhikari, K. E. Ramirez Sep 2020

Sensitivity And Performance Of The Advanced Ligo Detectors In The Third Observing Run, A. Buikema, C. Cahillane, G. L. Mansell, C. D. Blair, R. Abbott, C. Adams, R. Adhikari, K. E. Ramirez

Physics and Astronomy Faculty Publications and Presentations

On April 1st, 2019, the Advanced Laser Interferometer Gravitational-Wave Observatory (aLIGO), joined by the Advanced Virgo detector, began the third observing run, a year-long dedicated search for gravitational radiation. The LIGO detectors have achieved a higher duty cycle and greater sensitivity to gravitational waves than ever before, with LIGO Hanford achieving angle-averaged sensitivity to binary neutron star coalescences to a distance of 111 Mpc, and LIGO Livingston to 134 Mpc with duty factors of 74.6% and 77.0% respectively. The improvement in sensitivity and stability is a result of several upgrades to the detectors, including doubled intracavity power, the addition of …


26 Results Of Hyperbolic Partial Differential Equations In B-Poly Basis, Muhammad I. Bhatti, Emilio Hinojosa Sep 2020

26 Results Of Hyperbolic Partial Differential Equations In B-Poly Basis, Muhammad I. Bhatti, Emilio Hinojosa

Physics and Astronomy Faculty Publications and Presentations

A two-variable process to estimate results of Hyperbolic Partial Differentiation (HPD) equations in a B-Polynomial (B-Poly) bases is established. In the proposed process, a linear product of variable coefficients and B-Polys is manipulated to express the predicted solution of the HPD equation. The variable coefficients of the linear mixture in the results are concluded using Galerkin technique. The HPD equation is converted into a matrix which when inverted provided the unknown coefficients in the linear mixture of the solution. The anticipated solution is constructed from the variable coefficients and B-Poly basis set as a product with initial conditions implemented. Both …


Properties And Astrophysical Implications Of The 150 M ⊙ Binary Black Hole Merger Gw190521, R. Abbott, T. D. Abbott, A. Aich, G. Bissenbayeva, Teviet Creighton, Mario C. Diaz, S. Mukherjee, V. Quetschke, Malik Rakhmanov, K. E. Ramirez, P. K. Roy, W. H. Wang, A. K. Zadrozny Sep 2020

Properties And Astrophysical Implications Of The 150 M ⊙ Binary Black Hole Merger Gw190521, R. Abbott, T. D. Abbott, A. Aich, G. Bissenbayeva, Teviet Creighton, Mario C. Diaz, S. Mukherjee, V. Quetschke, Malik Rakhmanov, K. E. Ramirez, P. K. Roy, W. H. Wang, A. K. Zadrozny

Physics and Astronomy Faculty Publications and Presentations

The gravitational-wave signal GW190521 is consistent with a binary black hole (BBH) merger source at redshift 0.8 with unusually high component masses, M ⊙ and M ⊙, compared to previously reported events, and shows mild evidence for spin-induced orbital precession. The primary falls in the mass gap predicted by (pulsational) pair-instability supernova theory, in the approximate range 65–120 M ⊙. The probability that at least one of the black holes in GW190521 is in that range is 99.0%. The final mass of the merger ( M ⊙) classifies it as an intermediate-mass black hole. Under the assumption of a quasi-circular …


Gw190521: A Binary Black Hole Merger With A Total Mass Of 150 M⊙, R. Abbott, T. D. Abbott, A. Aich, G. Bissenbayeva, Teviet Creighton, Mario C. Diaz, Soma Mukherjee, Volker Quetschke, Malik Rakhmanov, K. E. Ramirez, P. K. Roy, W. H. Wang, A. K. Zadrozny Sep 2020

Gw190521: A Binary Black Hole Merger With A Total Mass Of 150 M⊙, R. Abbott, T. D. Abbott, A. Aich, G. Bissenbayeva, Teviet Creighton, Mario C. Diaz, Soma Mukherjee, Volker Quetschke, Malik Rakhmanov, K. E. Ramirez, P. K. Roy, W. H. Wang, A. K. Zadrozny

Physics and Astronomy Faculty Publications and Presentations

On May 21, 2019 at 03:02:29 UTC Advanced LIGO and Advanced Virgo observed a short duration gravitational-wave signal, GW190521, with a three-detector network signal-to-noise ratio of 14.7, and an estimated false-alarm rate of 1 in 4900 yr using a search sensitive to generic transients. If GW190521 is from a quasicircular binary inspiral, then the detected signal is consistent with the merger of two black holes with masses of 85+21−14  M⊙ and 66+17−18  M⊙ (90% credible intervals). We infer that the primary black hole mass lies within the gap produced by (pulsational) pair-instability supernova processes, with only a 0.32% probability of …


Prospects For Observing And Localizing Gravitational-Wave Transients With Advanced Ligo, Advanced Virgo And Kagra, B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. X. Adhikari, V. B. Adya, C. Affeldt, M. Agathos, K. Agatsuma, N. Aggarwal, O. D. Aguiar, L. Aiello, A. Ain, P. Ajith, T. Akutsu, B. Allen, A. Allocca, P. A. Altin, A. Ananyeva, S. B. Anderson, W. G. Anderson, M. Ando, S. Appert, K. Arai, A. Araya, Teviet Creighton, Mario C. Diaz, S. Mukherjee, V. Quetschke, Malik Rakhmanov, K. E. Ramirez, Satzhan Sitmukhambetov, Robert Stone, D. Tuyenbayev, W. H. Wang, A. K. Zadrozny Sep 2020

Prospects For Observing And Localizing Gravitational-Wave Transients With Advanced Ligo, Advanced Virgo And Kagra, B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. X. Adhikari, V. B. Adya, C. Affeldt, M. Agathos, K. Agatsuma, N. Aggarwal, O. D. Aguiar, L. Aiello, A. Ain, P. Ajith, T. Akutsu, B. Allen, A. Allocca, P. A. Altin, A. Ananyeva, S. B. Anderson, W. G. Anderson, M. Ando, S. Appert, K. Arai, A. Araya, Teviet Creighton, Mario C. Diaz, S. Mukherjee, V. Quetschke, Malik Rakhmanov, K. E. Ramirez, Satzhan Sitmukhambetov, Robert Stone, D. Tuyenbayev, W. H. Wang, A. K. Zadrozny

Physics and Astronomy Faculty Publications and Presentations

We present our current best estimate of the plausible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next several years, with the intention of providing information to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals for the third (O3), fourth (O4) and fifth observing (O5) runs, including the planned upgrades of the Advanced LIGO and Advanced Virgo detectors. We study the capability of the network to determine the sky location of the source for gravitational-wave signals from the inspiral of binary systems of …


Robust Localized Zero-Energy Modes From Locally Embedded Pt-Symmetric Defects, Fatemeh Mostafavi, Cem Yuce, Omar S. Magana-Loaiza, Henning Schomerus, Hamidreza Ramezani Sep 2020

Robust Localized Zero-Energy Modes From Locally Embedded Pt-Symmetric Defects, Fatemeh Mostafavi, Cem Yuce, Omar S. Magana-Loaiza, Henning Schomerus, Hamidreza Ramezani

Physics and Astronomy Faculty Publications and Presentations

We demonstrate the creation of robust localized zero-energy states that are induced into topologically trivial systems by insertion of a PT-symmetric defect with local gain and loss. A pair of robust localized states induced by the defect turns into zero-energy modes when the gain-loss contrast exceeds a threshold, at which the defect states encounter an exceptional point. Our approach can be used to obtain robust lasing or perfectly absorbing modes in any part of the system.


Induced Ferroelectric Phases In Srtio3 By A Nanocomposite Approach, Erik Enriquez, Qian Li, Pamela Bowlan, Ping Lu, Bruce Zhang, Leigang Li, Haiyan Wang, Antoinette J. Taylor, Dmitry Yarotski, Rohit P. Prasankumar Aug 2020

Induced Ferroelectric Phases In Srtio3 By A Nanocomposite Approach, Erik Enriquez, Qian Li, Pamela Bowlan, Ping Lu, Bruce Zhang, Leigang Li, Haiyan Wang, Antoinette J. Taylor, Dmitry Yarotski, Rohit P. Prasankumar

Physics and Astronomy Faculty Publications and Presentations

Inducing new phases in thick films via vertical lattice strain is one of the critical advantages of vertically aligned nanocomposites (VANs). In SrTiO3 (STO), the ground state is ferroelastic, and the ferroelectricity in STO is suppressed by the orthorhombic transition. Here, we explore whether vertical lattice strain in three-dimensional VANs can be used to induce new ferroelectric phases in SrTiO3:MgO (STO:MgO) VAN thin films. The STO:MgO system incorporates ordered, vertically aligned MgO nanopillars into a STO film matrix. Strong lattice coupling between STO and MgO imposes a large lattice strain in the STO film. We have investigated ferroelectricity in the …


A Simple Graphical Method For Calculating The Standing Wave Frequencies On A Rectangular Membrane, Joseph D. Romano, Richard H. Price Aug 2020

A Simple Graphical Method For Calculating The Standing Wave Frequencies On A Rectangular Membrane, Joseph D. Romano, Richard H. Price

Physics and Astronomy Faculty Publications and Presentations

In introductory physics courses, simple arguments based on traveling waves on a string are used to relate the frequency of standing waves to boundary conditions, e.g., the fixed ends of the string. Here, we extend that approach to two-dimensional waves such as the oscillations of a rectangular membrane with edges fixed at the boundary. This results in a graphical method that uses only simple geometry and is suitable for explaining two-dimensional standing-wave oscillations to non-science majors, e.g., in a physics of sound and music class.


Diffuse Spectra Model Of Photoluminescence In Carbon Quantum Dots, S. E. Kumekov, N. K. Saitova, Karen S. Martirosyan Aug 2020

Diffuse Spectra Model Of Photoluminescence In Carbon Quantum Dots, S. E. Kumekov, N. K. Saitova, Karen S. Martirosyan

Physics and Astronomy Faculty Publications and Presentations

The attractive aspect of excitation related to fluorescence nature in carbon quantum dots (CQD) has guided to several assumptions correlated with clusters size distribution, shapes as well as presence of different emissive states. In this study, a dimer–excimer model of photoluminescence (PL) in CQD describing discrete multiple electronic states for the excitation-dependent emission is described. The functional dependence of the characteristic width of the diffuse spectra of PL on the size of a quantum dots are calculated. The effective width of PL spectrum can be tuned from 0.1 to 1 eV.


Adaptive Spline Fitting With Particle Swarm Optimization, Soumya Mohanty, Ethan Fahnestock Aug 2020

Adaptive Spline Fitting With Particle Swarm Optimization, Soumya Mohanty, Ethan Fahnestock

Physics and Astronomy Faculty Publications and Presentations

In fitting data with a spline, finding the optimal placement of knots can significantly improve the quality of the fit. However, the challenging high-dimensional and non-convex optimization problem associated with completely free knot placement has been a major roadblock in using this approach. We present a method that uses particle swarm optimization (PSO) combined with model selection to address this challenge. The problem of overfitting due to knot clustering that accompanies free knot placement is mitigated in this method by explicit regularization, resulting in a significantly improved performance on highly noisy data. The principal design choices available in the method …


Absence Of Landau-Peierls Instability In The Magnetic Dual Chiral Density Wave Phase Of Dense Qcd, Efrain J. Ferrer, Vivian De La Incera Jul 2020

Absence Of Landau-Peierls Instability In The Magnetic Dual Chiral Density Wave Phase Of Dense Qcd, Efrain J. Ferrer, Vivian De La Incera

Physics and Astronomy Faculty Publications and Presentations

We investigate the stability of the magnetic dual chiral density wave (MDCDW) phase of cold and dense QCD against collective low-energy fluctuations of the order parameter. The appearance of additional structures in the system free energy due to the explicit breaking of the rotational and isospin symmetries by the external magnetic field play a crucial role in the analysis. The new structures stiffen the spectrum of the thermal fluctuations in the transverse direction, thereby avoiding the Landau-Peierls instability that affects single-modulated phases at arbitrarily low temperatures. The lack of Landau-Peierls instabilities in the MDCDW phase makes this inhomogeneous phase of …


Using Artificial Neural Networks To Detect Astronomical Transients, Katarzyna Wardęga Jul 2020

Using Artificial Neural Networks To Detect Astronomical Transients, Katarzyna Wardęga

Theses and Dissertations

A kilonova is an r-process-powered thermal transient created in the aftermath of a binary neutron star or black hole-neutron star merger. During these merger events, gravitational waves act as alert signals for telescopes to respond and search for potential optical counterparts. The localization probability regions for gravitational waves on the sky can be large. Additionally, kilonovae are rapidly-fading transients, making it crucial to develop an efficient method to detect them in image data. The standard method to detect transients is to subtract an image containing the plausible transient from a reference image of the same region taken at a different …


Astroalign: A Python Module For Astronomical Image Registration, Martin Beroiz, Juan B. Cabral, Bruno Sanchez Jul 2020

Astroalign: A Python Module For Astronomical Image Registration, Martin Beroiz, Juan B. Cabral, Bruno Sanchez

Physics and Astronomy Faculty Publications and Presentations

We present an algorithm implemented in the Astroalign Python module for image registration in astronomy. Our module does not rely on WCS information and instead matches three-point asterisms (triangles) on the images to find the most accurate linear transformation between them. It is especially useful in the context of aligning images prior to stacking or performing difference image analysis. Astroalign can match images of different point-spread functions, seeing, and atmospheric conditions.


Absence Of Landau-Peierls Instability In The Magnetic Dual Chiral Density Wave Phase Of Dense Qcd, Efrain J. Ferrer, Vivian De La Incera Jul 2020

Absence Of Landau-Peierls Instability In The Magnetic Dual Chiral Density Wave Phase Of Dense Qcd, Efrain J. Ferrer, Vivian De La Incera

Physics and Astronomy Faculty Publications and Presentations

We investigate the stability of the magnetic dual chiral density wave (MDCDW) phase of cold and dense QCD against collective low-energy fluctuations of the order parameter. The appearance of additional structures in the system free energy due to the explicit breaking of the rotational and isospin symmetries by the external magnetic field play a crucial role in the analysis. The new structures stiffen the spectrum of the thermal fluctuations in the transverse direction, thereby avoiding the Landau-Peierls instability that affects single-modulated phases at arbitrarily low temperatures. The lack of Landau-Peierls instabilities in the MDCDW phase makes this inhomogeneous phase of …


Searching For Optical Counterparts To Gravitational Waves, Richard Camuccio May 2020

Searching For Optical Counterparts To Gravitational Waves, Richard Camuccio

Theses and Dissertations

The era of multi-messenger astronomy has begun. The coordinated activities of multiple, distinct observatories play a critical role in both responding to astrophysical transients and building a more comprehensive interpretation otherwise inaccessible to individual observations. The Transient Robotic Observatory of the South (TOROS) Collaboration has a global network of instruments capable of responding to several transient targets of opportunity. The purpose of this thesis is to demonstrate how optical observatories with small fields of view (degree) can follow up and observe astrophysical transients. TOROS facilities responded to three unique gravitational wave events during the second and third observational campaigns of …


Fingerprints Of Binary Black Hole Formation Channels Encoded In The Mass And Spin Of Merger Remnants, Manuel Arca Sedda, Michaela Mapelli, Mario Spera, Matthew Benacquista, Nicola Giacobbo May 2020

Fingerprints Of Binary Black Hole Formation Channels Encoded In The Mass And Spin Of Merger Remnants, Manuel Arca Sedda, Michaela Mapelli, Mario Spera, Matthew Benacquista, Nicola Giacobbo

Physics and Astronomy Faculty Publications and Presentations

Binary black holes (BBHs) are thought to form in different environments, including the galactic field and (globular, nuclear, young, and open) star clusters. Here, we propose a method to estimate the fingerprints of the main BBH formation channels associated with these different environments. We show that the metallicity distribution of galaxies in the local universe along with the relative amount of mergers forming in the field or in star clusters determine the main properties of the BBH population. Our fiducial model predicts that the heaviest merger to date, GW170729, originated from a progenitor that underwent 2–3 merger events in a …


Toros Optical Follow-Up Of The Advanced Ligo–Virgo O2 Second Observational Campaign, Rodolfo Artola, Martin Beroiz, Juan Cabral, R. Camuccio, Moises Castillo, Mario C. Diaz, Aldo Fonrouge, Alejandro F. Hinojosa, Andrea Hinojosa, Americo F. Hinojosa, Wendy Mendoza, Victor Perez, Tania Peñuela, Wahltyn Rattray, Ervin Vilchis, Adam Zadrozny Apr 2020

Toros Optical Follow-Up Of The Advanced Ligo–Virgo O2 Second Observational Campaign, Rodolfo Artola, Martin Beroiz, Juan Cabral, R. Camuccio, Moises Castillo, Mario C. Diaz, Aldo Fonrouge, Alejandro F. Hinojosa, Andrea Hinojosa, Americo F. Hinojosa, Wendy Mendoza, Victor Perez, Tania Peñuela, Wahltyn Rattray, Ervin Vilchis, Adam Zadrozny

Physics and Astronomy Faculty Publications and Presentations

We present themethods and results of the optical follow-up, conducted by the Transient Optical Robotic Observatory of the South Collaboration, of gravitational wave events detected during the Advanced LIGO–Virgo second observing run (2016 November–2017 August). Given the limited field of view (∼100 arcmin) of our observational instrumentation, we targeted galaxies within the area of high localization probability that were observable from our sites. We analysed the observations using difference imaging, followed by a random forest algorithm to discriminate between real and spurious transients. Our observations were conducted using telescopes at Estacion Astrofısica de Bosque Alegre, Cerro Tololo Inter-American Observatory, the …


Towards A Real-Time Fully-Coherent All-Sky Search For Gravitational Waves From Compact Binary Coalescences Using Particle Swarm Optimization, M. E. Normandin, Soumya Mohanty Apr 2020

Towards A Real-Time Fully-Coherent All-Sky Search For Gravitational Waves From Compact Binary Coalescences Using Particle Swarm Optimization, M. E. Normandin, Soumya Mohanty

Physics and Astronomy Faculty Publications and Presentations

While a fully-coherent all-sky search is known to be optimal for detecting gravitational wave signals from compact binary coalescences, its high computational cost has limited current searches to less sensitive coincidence-based schemes. Following up on previous work that has demonstrated the effectiveness of particle swarm optimization (PSO) in reducing the computational cost of this search, we present an implementation that achieves near real-time computational speed. This is achieved by combining the search efficiency of PSO with a significantly revised and optimized numerical implementation of the underlying mathematical formalism along with additional multithreaded parallelization layers in a distributed computing framework. For …


Gw190425: Observation Of A Compact Binary Coalescence With Total Mass ∼ 3.4 M⊙, B. P. Abbott, R. Abbott, T. D. Abbott, S. Abraham, F. Acernese, Teviet Creighton, Mario C. Diaz, Soma Mukherjee, Volker Quetschke, Malik Rakhmanov, Karla E. Ramirez, Satzhan Sitmukhambetov, Robert Stone, D. Tuyenbayev, Wenhui Wang, Adam Zadrozny Mar 2020

Gw190425: Observation Of A Compact Binary Coalescence With Total Mass ∼ 3.4 M⊙, B. P. Abbott, R. Abbott, T. D. Abbott, S. Abraham, F. Acernese, Teviet Creighton, Mario C. Diaz, Soma Mukherjee, Volker Quetschke, Malik Rakhmanov, Karla E. Ramirez, Satzhan Sitmukhambetov, Robert Stone, D. Tuyenbayev, Wenhui Wang, Adam Zadrozny

Physics and Astronomy Faculty Publications and Presentations

On 2019 April 25, the LIGO Livingston detector observed a compact binary coalescence with signal-to-noise ratio 12.9. The Virgo detector was also taking data that did not contribute to detection due to a low signal-to-noise ratio, but were used for subsequent parameter estimation. The 90% credible intervals for the component masses range from to (– if we restrict the dimensionless component spin magnitudes to be smaller than 0.05). These mass parameters are consistent with the individual binary components being neutron stars. However, both the source-frame chirp mass and the total mass of this system are significantly larger than those of …


Loop-Closure Kinetics Reveal A Stable, Right-Handed Dna Intermediate In Cre Recombination, Massa J. Shoura, Stefan M. Giovan, Alexandre A. Vetcher, Riccardo Ziraldo, Andreas Hanke, Stephen D. Levene Mar 2020

Loop-Closure Kinetics Reveal A Stable, Right-Handed Dna Intermediate In Cre Recombination, Massa J. Shoura, Stefan M. Giovan, Alexandre A. Vetcher, Riccardo Ziraldo, Andreas Hanke, Stephen D. Levene

Physics and Astronomy Faculty Publications and Presentations

In Cre site-specific recombination, the synaptic intermediate is a recombinase homotetramer containing a pair of loxP DNA target sites. The enzyme system's strand-exchange mechanism proceeds via a Holliday-junction (HJ) intermediate; however, the geometry of DNA segments in the synapse has remained highly controversial. In particular, all crystallographic structures are consistent with an achiral, planar Holliday-junction (HJ) structure, whereas topological assays based on Cre-mediated knotting of plasmid DNAs are consistent with a right-handed chiral junction. We use the kinetics of loop closure involving closely spaced (131–151 bp) loxP sites to investigate the in-aqueo ensemble of conformations for the longest-lived looped DNA …


Lack Of Debye And Meissner Screening In Strongly Magnetized Quark Matter At Intermediate Densities, Bo Feng, Efrain J. Ferrer, Israel Portillo Mar 2020

Lack Of Debye And Meissner Screening In Strongly Magnetized Quark Matter At Intermediate Densities, Bo Feng, Efrain J. Ferrer, Israel Portillo

Physics and Astronomy Faculty Publications and Presentations

We study the static responses of cold quark matter in the intermediate baryonic density region (characterized by a chemical potential μ) in the presence of a strong-magnetic field. We consider in particular, the so-called magnetic dual Chiral Density Wave (MDCDW) phase, which is materialized by an inhomogeneous condensate formed by a particle-hole pair. It is shown, that the MDCDW phase is more stable in the weak-coupling regime than the one considered in the magnetic catalysis of chiral symmetry braking phenomenon and even than the chiral symmetric phase that was expected to be realized at sufficiently high baryonic chemical potential. The …


Monitoring Of The Radio Galaxy M 87 During A Low-Emission State From 2012 To 2015 With Magic, V. A. Acciari, S. Ansoldi, Juan P. Madrid Jan 2020

Monitoring Of The Radio Galaxy M 87 During A Low-Emission State From 2012 To 2015 With Magic, V. A. Acciari, S. Ansoldi, Juan P. Madrid

Physics and Astronomy Faculty Publications and Presentations

M87 is one of the closest (z = 0.004 36) extragalactic sources emitting at very high energies (VHE, E > 100 GeV). The aim of this work is to locate the region of the VHE gamma-ray emission and to describe the observed broad-band spectral energy distribution (SED) during the low VHE gamma-ray state. The data fromM87 collected between 2012 and 2015 as part of aMAGIC monitoring programme are analysed and combined with multiwavelength data from Fermi-LAT, Chandra, HST, EVN, VLBA, and the Liverpool Telescope. The averaged VHE gamma-ray spectrum can be fitted from ∼100 GeV to ∼10 TeV with a simple …


Impact Of The Next Gen Pet Curriculum On Science Identity, Robynne M. Lock, Ben Van Dusen, Steven Maier, Liang Zeng Jan 2020

Impact Of The Next Gen Pet Curriculum On Science Identity, Robynne M. Lock, Ben Van Dusen, Steven Maier, Liang Zeng

Physics and Astronomy Faculty Publications and Presentations

The Next Gen Physical Science and Everyday Thinking (PET) curriculum was designed for physical science courses for future elementary teachers. However, this curriculum may also be used in general education conceptual science courses. The materials are aligned with the Next Generation Science Standards and use a guided-inquiry approach. Next Gen PET is currently being implemented at many universities nationwide. We examine the impact of this curriculum on students’ science identities at a subset of these universities. The identity framework consists of three dimensions. Recognition is the extent to which a student believes that parents, peers, and professors view them as …


Model Comparison From Ligo–Virgo Data On Gw170817’S Binary Components And Consequences For The Merger Remnant, B. P. Abbott, R. Abbott, Teviet Creighton, Mario C. Diaz, Soma Mukherjee, Volker Quetschke, Malik Rakhmanov, K. E. Ramirez, Satzhan Sitmukhambetov, Robert Stone, D. Tuyenbayev, W. H. Wang, A. K. Zadrozny Jan 2020

Model Comparison From Ligo–Virgo Data On Gw170817’S Binary Components And Consequences For The Merger Remnant, B. P. Abbott, R. Abbott, Teviet Creighton, Mario C. Diaz, Soma Mukherjee, Volker Quetschke, Malik Rakhmanov, K. E. Ramirez, Satzhan Sitmukhambetov, Robert Stone, D. Tuyenbayev, W. H. Wang, A. K. Zadrozny

Physics and Astronomy Faculty Publications and Presentations

GW170817 is the very first observation of gravitational waves originating from the coalescence of two compact objects in the mass range of neutron stars, accompanied by electromagnetic counterparts, and offers an opportunity to directly probe the internal structure of neutron stars. We perform Bayesian model selection on a wide range of theoretical predictions for the neutron star equation of state. For the binary neutron star hypothesis, we find that we cannot rule out the majority of theoretical models considered. In addition, the gravitational-wave data alone does not rule out the possibility that one or both objects were low-mass black holes. …