Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Physical Sciences and Mathematics

Chandra Grating Spectroscopy Of Embedded Wind Shock X-Ray Emission From O Stars Shows Low Plasma Temperatures And Significant Wind Absorption, David H. Cohen, V. Vaughn Parts, Graham M. Doskoch , '20, Jiaming Wang , '22, V. Petit, M. A. Leutenegger, M. Gagné May 2021

Chandra Grating Spectroscopy Of Embedded Wind Shock X-Ray Emission From O Stars Shows Low Plasma Temperatures And Significant Wind Absorption, David H. Cohen, V. Vaughn Parts, Graham M. Doskoch , '20, Jiaming Wang , '22, V. Petit, M. A. Leutenegger, M. Gagné

Physics & Astronomy Faculty Works

We present a uniform analysis of six examples of embedded wind shock (EWS) O star X-ray sources observed at high resolution with the Chandra grating spectrometers. By modelling both the hot plasma emission and the continuum absorption of the soft X-rays by the cool, partially ionized bulk of the wind we derive the temperature distribution of the shock-heated plasma and the wind mass-loss rate of each star. We find a similar temperature distribution for each star’s hot wind plasma, consistent with a power-law differential emission measure, dlogEMdlogT⁠, with a slope a little steeper than −2, up to temperatures of only …


Chandra Spectral Measurements Of The O Supergiant Ζ Puppis Indicate A Surprising Increase In The Wind Mass-Loss Rate Over 18 Yr, David H. Cohen, Jiaming Wang , '22, V. Petit, M. A. Leutenegger, L. Dakir, C. Mayhue , '23, A. David-Uraz Dec 2020

Chandra Spectral Measurements Of The O Supergiant Ζ Puppis Indicate A Surprising Increase In The Wind Mass-Loss Rate Over 18 Yr, David H. Cohen, Jiaming Wang , '22, V. Petit, M. A. Leutenegger, L. Dakir, C. Mayhue , '23, A. David-Uraz

Physics & Astronomy Faculty Works

New long Chandra grating observations of the O supergiant ζ Pup show not only a brightening of the X-ray emission line flux of 13 per cent in the 18 yr since Chandra’s first observing cycle, but also clear evidence – at more than 4σ significance – of increased wind absorption signatures in its Doppler-broadened line profiles. We demonstrate this with non-parametric analysis of the profiles as well as Gaussian fitting and then use line-profile model fitting to derive a mass-loss rate of 2.47 ± 0.09 × 10−6[Math Processing Error]⁠, which is a 40 per cent increase over the value obtained …


Variability In X-Ray Line Ratios In Helium-Like Ions Of Massive Stars: The Wind-Driven Case, Richard Ignace, Z. Damrau, K. T. Hole May 2019

Variability In X-Ray Line Ratios In Helium-Like Ions Of Massive Stars: The Wind-Driven Case, Richard Ignace, Z. Damrau, K. T. Hole

ETSU Faculty Works

Context. High spectral resolution and long exposure times are providing unprecedented levels of data quality of massive stars at X-ray wavelengths.

Aims. A key diagnostic of the X-ray emitting plasma are the fir lines for He-like triplets. In particular, owing to radiative pumping effects, the forbidden-to-intercombination line luminosity ratio, R = fi, can be used to determine the proximity of the hot plasma to the UV-bright photospheres of massive stars. Moreover, the era of large observing programs additionally allows for investigation of line variability.

Methods. This contribution is the second to explore how variability in the line …


On The Binary Nature Of Massive Blue Hypergiants: High-Resolution X-Ray Spectroscopy Suggests That Cyg Ob2 12 Is A Colliding Wind Binary - Iopscience, Lidia M. Oskinova, David P. Huenemoerder, Wolf-Rainer Hamann, Tomer Shenar, A. A.C. Sander, Richard Ignace, H. Todt, R. Hainich Aug 2017

On The Binary Nature Of Massive Blue Hypergiants: High-Resolution X-Ray Spectroscopy Suggests That Cyg Ob2 12 Is A Colliding Wind Binary - Iopscience, Lidia M. Oskinova, David P. Huenemoerder, Wolf-Rainer Hamann, Tomer Shenar, A. A.C. Sander, Richard Ignace, H. Todt, R. Hainich

ETSU Faculty Works

The blue hypergiant Cyg OB2 12 (B3Ia+) is a representative member of the class of very massive stars in a poorly understood evolutionary stage. We obtained its high-resolution X-ray spectrum using the Chandra observatory. PoWR model atmospheres were calculated to provide realistic wind opacities and to establish the wind density structure. We find that collisional de-excitation is the dominant mechanism depopulating the metastable upper levels of the forbidden lines of the He-like ions Si xivand Mg xii. Comparison between the model and observations reveals that X-ray emission is produced in a dense plasma, which could reside only at the photosphere …


On The Absence Of Non-Thermal X-Ray Emission Around Runaway O Stars, Jesus A. Toalá, Lidia M. Oskinova, Richard Ignace Apr 2017

On The Absence Of Non-Thermal X-Ray Emission Around Runaway O Stars, Jesus A. Toalá, Lidia M. Oskinova, Richard Ignace

ETSU Faculty Works

Theoretical models predict that the compressed interstellar medium around runaway O stars can produce high-energy non-thermal diffuse emission, in particular, non-thermal X-ray and γ-ray emission. So far, detection of non-thermal X-ray emission was claimed for only one runaway star, AE Aur. We present a search for non-thermal diffuse X-ray emission from bow shocks using archived XMM-Newton observations for a clean sample of six well-determined runaway O stars. We find that none of these objects present diffuse X-ray emission associated with their bow shocks, similarly to previous X-ray studies toward ζ Oph and BD+43°3654. We carefully investigated multi-wavelength observations of …


Magnetic Massive Stars As Progenitors Of ‘Heavy’ Stellar-Mass Black Holes, V. Petit, Z. Keszthelyi, R. Macinnis, David H. Cohen, R. H. D. Townsend, G. A. Wade, S. L. Thomas, S. P. Owocki, J. Puls, A. Ud-Doula Apr 2017

Magnetic Massive Stars As Progenitors Of ‘Heavy’ Stellar-Mass Black Holes, V. Petit, Z. Keszthelyi, R. Macinnis, David H. Cohen, R. H. D. Townsend, G. A. Wade, S. L. Thomas, S. P. Owocki, J. Puls, A. Ud-Doula

Physics & Astronomy Faculty Works

The groundbreaking detection of gravitational waves produced by the inspiralling and coalescence of the black hole (BH) binary GW150914 confirms the existence of ‘heavy’ stellar-mass BHs with masses >25 M⊙. Initial characterization of the system by Abbott et al. supposes that the formation of BHs with such large masses from the evolution of single massive stars is only feasible if the wind mass-loss rates of the progenitors were greatly reduced relative to the mass-loss rates of massive stars in the Galaxy, concluding that heavy BHs must form in low-metallicity (Z ≲ 0.25-0.5 Z⊙) environments. However, strong surface magnetic fields also …


Period Change And Stellar Evolution Of Β Cephei Stars, Hilding R. Neilson, Richard Ignace Dec 2015

Period Change And Stellar Evolution Of Β Cephei Stars, Hilding R. Neilson, Richard Ignace

ETSU Faculty Works

The β Cephei stars represent an important class of massive star pulsators that probe the evolution of B-type stars and the transition from main sequence to hydrogen-shell burning evolution. By understanding β Cep stars, we gain insights into the detailed physics of massive star evolution, including rotational mixing, convective core overshooting, magnetic fields, and stellar winds, all of which play important roles. Similarly, modeling their pulsation provides additional information into their interior structures. Furthermore, measurements of the rate of change of pulsation period offer a direct measure of β Cephei stellar evolution. In this work, we compute state-of-the-art stellar evolution …


Evidence Of A Mira-Like Tail And Bow Shock About The Semi-Regular Variable V Cvn From Four Decades Of Polarization Measurements., Hilding Neilson, Richard Ignace, Beverly Smith, Gary Henson, Alyssa Adams Aug 2014

Evidence Of A Mira-Like Tail And Bow Shock About The Semi-Regular Variable V Cvn From Four Decades Of Polarization Measurements., Hilding Neilson, Richard Ignace, Beverly Smith, Gary Henson, Alyssa Adams

ETSU Faculty Works

Polarization is a powerful tool for understanding stellar atmospheres and circumstellar environments. Mira and semi-regular variable stars have been observed for decades and some are known to be polarimetrically variable, however, the semi-regular variable V Canes Venatici displays an unusually large, unexplained amount of polarization. We present ten years of optical polarization observations obtained with the HPOL instrument, supplemented by published observations spanning a total interval of about forty years for V CVn. We find that V CVn shows large polarization variations ranging from 1 - 6%. We also find that for the past forty years the position angle measured …


X-Rays From Magnetically Confined Wind Shocks: Effect Of Cooling-Regulated Shock Retreat, A. Ud-Doula, S. Owocki, R. Townsend, V. Petit, David H. Cohen Jul 2014

X-Rays From Magnetically Confined Wind Shocks: Effect Of Cooling-Regulated Shock Retreat, A. Ud-Doula, S. Owocki, R. Townsend, V. Petit, David H. Cohen

Physics & Astronomy Faculty Works

We use 2D magnetohydrodynamic (MHD) simulations to examine the effects of radiative cooling and inverse Compton (IC) cooling on X-ray emission from magnetically confined wind shocks (MCWS) in magnetic massive stars with radiatively driven stellar winds. For the standard dependence of mass-loss rate on luminosity Ṁ∼ L1.7, the scaling of IC cooling with L and radiative cooling with Ṁ means that IC cooling become formally more important for lower luminosity stars. However, because the sense of the trends is similar, we find the overall effect of including IC cooling is quite modest. More significantly, for stars with high enough mass-loss …


Measuring Mass-Loss Rates And Constraining Shock Physics Using X-Ray Line Profiles Of O Stars From The Chandra Archive, David H. Cohen, Emma E. Wollman , '09, M. A. Leutenegger, J. O. Sundqvist, A. W. Fullerton, J. Zsargó, S. P. Owocki Mar 2014

Measuring Mass-Loss Rates And Constraining Shock Physics Using X-Ray Line Profiles Of O Stars From The Chandra Archive, David H. Cohen, Emma E. Wollman , '09, M. A. Leutenegger, J. O. Sundqvist, A. W. Fullerton, J. Zsargó, S. P. Owocki

Physics & Astronomy Faculty Works

We quantitatively investigate the extent of wind absorption signatures in the X-ray grating spectra of all non-magnetic, effectively single O stars in the Chandra archive via line profile fitting. Under the usual assumption of a spherically symmetric wind with embedded shocks, we confirm previous claims that some objects show little or no wind absorption. However, many other objects do show asymmetric and blueshifted line profiles, indicative of wind absorption. For these stars, we are able to derive wind mass-loss rates from the ensemble of line profiles, and find values lower by an average factor of 3 than those predicted by …