Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Astrophysics and Astronomy

Selected Works

LIGO

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Gw151226: Observation Of Gravitational Waves From A 22-Solar-Mass Binary Black Hole Coalescence, B. P. Abbott, K. Gill, B. Hughey, M. J. Szczepanczyk, M. Zanolin, Et Al. Nov 2017

Gw151226: Observation Of Gravitational Waves From A 22-Solar-Mass Binary Black Hole Coalescence, B. P. Abbott, K. Gill, B. Hughey, M. J. Szczepanczyk, M. Zanolin, Et Al.

Michele Zanolin

We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5 σ. The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 …


Observing Gravitational-Wave Transient Gw150914 With Minimal Assumptions, B. P. Abbott, K. Gill, B. Hughey, M. Szczepańczyk, M. Zanolin, Et Al. Nov 2017

Observing Gravitational-Wave Transient Gw150914 With Minimal Assumptions, B. P. Abbott, K. Gill, B. Hughey, M. Szczepańczyk, M. Zanolin, Et Al.

Michele Zanolin

The gravitational-wave signal GW150914 was first identified on September 14, 2015, by searches for short-duration gravitational-wave transients. These searches identify time-correlated transients in multiple detectors with minimal assumptions about the signal morphology, allowing them to be sensitive to gravitational waves emitted by a wide range of sources including binary black hole mergers. Over the observational period from September 12 to October 20, 2015, these transient searches were sensitive to binary black hole mergers similar to GW150914 to an average distance of ∼600  Mpc. In this paper, we describe the analyses that first detected GW150914 as well as the parameter estimation …


Gravitational-Wave Science With The Laser Interferometer Gravitational-Wave Observatory, Madeline Wade May 2017

Gravitational-Wave Science With The Laser Interferometer Gravitational-Wave Observatory, Madeline Wade

Madeline Wade

Gravitational-waves, as predicted by Einstein’s theory of general relativity, are oscillations of spacetime caused by the motion of masses. Although not yet directly detected, there is strong evidence for the existence of gravitational-waves. Detectable gravitational waves will come from dramatic astrophysical events, such as supernova explosions and collisions of black holes. The Laser Interferometer Gravitational-wave Observatory (LIGO) is a network of detectors designed to make the first direct detection of gravitational waves. The upgraded version of LIGO, Advanced LIGO (aLIGO), will offer a dramatic improvement in sensitivity that will virtually guarantee detections. Gravitational-wave detections will not only illuminate mysterious astrophysical …


Gravitational Waves: A New Window Into The Cosmos, Jeffrey S. Hazboun May 2015

Gravitational Waves: A New Window Into The Cosmos, Jeffrey S. Hazboun

Jeffrey Hazboun

No abstract provided.