Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Astrophysics and Astronomy

Faculty Scholarship

Series

2018

Galaxies: stellar content

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Galaxy And Mass Assembly (Gama): Morphological Transformation Of Galaxies Across The Green Valley, M. N. Bremer, S. Phillipps, S. Kelvin, R. De Propris, Rebecca Kennedy, Amanda J. Moffett, S. Bamford, L. J.M. Davies, S. P. Driver, B. Häußler, Benne W. Holwerda, A. Hopkins, P. A. James, J. Liske, S. Percival, N. Taylor May 2018

Galaxy And Mass Assembly (Gama): Morphological Transformation Of Galaxies Across The Green Valley, M. N. Bremer, S. Phillipps, S. Kelvin, R. De Propris, Rebecca Kennedy, Amanda J. Moffett, S. Bamford, L. J.M. Davies, S. P. Driver, B. Häußler, Benne W. Holwerda, A. Hopkins, P. A. James, J. Liske, S. Percival, N. Taylor

Faculty Scholarship

We explore constraints on the joint photometric and morphological evolution of typical low redshift galaxies as they move from the blue cloud through the green valley and on to the red sequence. We select Galaxy And Mass Assembly (GAMA) survey galaxies with 10.25 < log(M*/Mo˙) < 10.75 and z < 0.2 classified according to their intrinsic u* - r* colour. From single component Śersic fits, we find that the stellar mass-sensitive K-band profiles of red and green galaxy populations are very similar while g-band profiles indicate more disc-like morphologies for the green galaxies: apparent (optical) morphological differences arise primarily from radial mass-to-light ratio variations. Two-component fits show that most green galaxies have significant bulge and disc components and that the blue to red evolution is driven by colour change in the disc. Together, these strongly suggest that galaxies evolve from blue to red through secular disc fading and that a strong bulge is present prior to any decline in star formation. The relative abundance of the green population implies a typical time-scale for traversing the green valley ~1-2 Gyr and is independent of environment, unlike that of the red and blue populations. While environment likely plays a role in triggering the passage across the green valley, it appears to have little effect on time taken. These results are consistent with a green valley population dominated by (early type) disc galaxies that are insufficiently supplied with gas to maintain previous levels of disc star formation, eventually attaining passive colours. No single event is needed to quench their star formation.


Galaxy And Mass Assembly (Gama): Blue Spheroids Within 87 Mpc, Smriti Mahajan, Michael J. Drinkwater, S. Driver, A. M. Hopkins, Alister W. Graham, S. Brough, Michael J.I. Brown, Benne W. Holwerda, Matt S. Owers, Kevin A. Pimbblet Mar 2018

Galaxy And Mass Assembly (Gama): Blue Spheroids Within 87 Mpc, Smriti Mahajan, Michael J. Drinkwater, S. Driver, A. M. Hopkins, Alister W. Graham, S. Brough, Michael J.I. Brown, Benne W. Holwerda, Matt S. Owers, Kevin A. Pimbblet

Faculty Scholarship

In this paper, we test if nearby blue spheroid (BSph) galaxies may become the progenitors of star-forming spiral galaxies or passively evolving elliptical galaxies. Our sample comprises 428 galaxies of various morphologies in the redshift range 0.002 < Ζ < 0.02 (8-87 Mpc) with panchromatic data from the Galaxy and Mass Assembly survey. We find that BSph galaxies are structurally (mean effective surface brightness, effective radius) very similar to their passively evolving red counterparts. However, their star formation and other properties such as colour, age, and metallicity are more like star-forming spirals than spheroids (ellipticals and lenticulars). We show that BSph galaxies are statistically distinguishable from other spheroids as well as spirals in the multidimensional space mapped by luminosity-weighted age, metallicity, dust mass, and specific star formation rate. We use HI data to reveal that some of the BSphs are (further) developing their discs, hence their blue colours. They may eventually become spiral galaxies - if sufficient gas accretion occurs - or more likely fade into low-mass red galaxies.


Galaxy And Mass Assembly (Gama): The Consistency Of Gama And Wise Derived Mass-To-Light Ratios, T. Kettlety, J. Hesling, S. Phillipps, M. N. Bremer, M. E. Cluver, E. N. Taylor, J. Bland-Hawthorn, S. Brough, R. De Propris, S. P. Driver, Benne W. Holwerda, L. S. Kelvin, W. Sutherland, A. H. Wright Jan 2018

Galaxy And Mass Assembly (Gama): The Consistency Of Gama And Wise Derived Mass-To-Light Ratios, T. Kettlety, J. Hesling, S. Phillipps, M. N. Bremer, M. E. Cluver, E. N. Taylor, J. Bland-Hawthorn, S. Brough, R. De Propris, S. P. Driver, Benne W. Holwerda, L. S. Kelvin, W. Sutherland, A. H. Wright

Faculty Scholarship

Recent work has suggested that mid-IR wavelengths are optimal for estimating the mass-to-light ratios of stellar populations and hence the stellar masses of galaxies. We compare stellar masses deduced from spectral energy distribution (SED) models, fitted to multiwavelength optical-NIR photometry, to luminosities derived from WISE photometry in the W1 and W2 bands at 3.6 and 4.5 μmfor non-star forming galaxies. The SED-derived masses for a carefully selected sample of low-redshift (z≤0.15) passive galaxies agree with the prediction from stellar population synthesis models such that M*/LW1 ≃0.6 for all such galaxies, independent of other stellar population parameters. The small scatter between …