Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physical Sciences and Mathematics

Star Cluster Populations In Compact Groups Of Galaxies, Konstantin Fedotov Dec 2014

Star Cluster Populations In Compact Groups Of Galaxies, Konstantin Fedotov

Electronic Thesis and Dissertation Repository

In this thesis, I have explored the star cluster populations of several compact groups of galaxies, based on observations with the Advanced Camera for Surveys and the Wide Field Camera 3 on the Hubble Space Telescope. Low velocity dispersions and high galaxy number densities, the conditions of compact groups (in particular Hickson Compact Groups), represent an environment with frequent and prolonged interactions. Such environment can trigger the formation of star cluster populations associated with specific events. The BVI study has shown that star clusters can be used as a powerful tool for studying such events triggered by mergers and …


Scale-Up Methodology For Bench-Scale Slurry Photocatalytic Reactors Using Combined Irradiation And Kinetic Modelling, Patricio J. Valades Pelayo Dec 2014

Scale-Up Methodology For Bench-Scale Slurry Photocatalytic Reactors Using Combined Irradiation And Kinetic Modelling, Patricio J. Valades Pelayo

Electronic Thesis and Dissertation Repository

The present study focuses on developing a predictive methodology to scale-up a slurry annular photoreactor using a TiO2 Degussa P25 from the bench-scale to a pilot-plant scale. The bench-scale photoreactor is a Photo-CREC-Water II, a 2.65 L internally-irradiated slurry annular photocatalytic reactor. The pilot-plant scale photoreactor is a Photo-CREC Water Solar Simulator, a 9.8 L pilot-plant photoreactor, externally irradiated by eight lamps.

The adopted methodology allows the independent validation of radiative and kinetic models avoiding cross-correlation issues. The proposed approach involves two Monte Carlo methods, to model the Radiative Transfer Equation (RTE) inside each photoreactor. With this end, a …


The Hα Spectroscopy Of Classical B-Emission Stars, Jessie M. Silaj Dec 2014

The Hα Spectroscopy Of Classical B-Emission Stars, Jessie M. Silaj

Electronic Thesis and Dissertation Repository

Classical B-emission (Be) stars are rapidly-rotating, massive stars that possess a dense, equatorial, gaseous disk. The presence of a disk was first inferred from the Balmer series emission that these stars exhibit, and Hα emission lines remain both a hallmark observational feature and one of the key diagnostics in determining the physical conditions within the disk.

In the first chapter of this thesis, we investigate the possible role of line-driven winds in disk formation. To test if line-driven winds could supply enough material to account for the equatorial disk, we check for the presence of Hα emission in the models …


Observational Signatures From Self-Gravitating Protostellar Disks, Alexander L. Desouza Aug 2014

Observational Signatures From Self-Gravitating Protostellar Disks, Alexander L. Desouza

Electronic Thesis and Dissertation Repository

Protostellar disks are the ubiquitous corollary outcome of the angular momentum conserving, gravitational collapse of molecular cloud cores into stars. Disks are an essential component of the star formation process, mediating the accretion of material onto the protostar, and for redistributing excess angular momentum during the collapse. We present a model to explain the observed correlation between mass accretion rates and stellar mass that has been inferred from observations of intermediate to upper mass T Tauri stars. We explain this correlation within the framework of gravitationally driven torques parameterized in terms of Toomre’s Q criterion. Our models reproduce both the …


Automated Image Interpretation For Science Autonomy In Robotic Planetary Exploration, Raymond Francis Aug 2014

Automated Image Interpretation For Science Autonomy In Robotic Planetary Exploration, Raymond Francis

Electronic Thesis and Dissertation Repository

Advances in the capabilities of robotic planetary exploration missions have increased the wealth of scientific data they produce, presenting challenges for mission science and operations imposed by the limits of interplanetary radio communications. These data budget pressures can be relieved by increased robotic autonomy, both for onboard operations tasks and for decision- making in response to science data.

This thesis presents new techniques in automated image interpretation for natural scenes of relevance to planetary science and exploration, and elaborates autonomy scenarios under which they could be used to extend the reach and performance of exploration missions on planetary surfaces.

Two …


The X-Ray View Of Galaxies In Compact Groups And The Coma Cluster Infall Region, Tyler D. Desjardins Jul 2014

The X-Ray View Of Galaxies In Compact Groups And The Coma Cluster Infall Region, Tyler D. Desjardins

Electronic Thesis and Dissertation Repository

In this thesis, we have explored what information may be gleaned from X-ray observations of galaxies in dense environments. We use X-ray observations from XMM- Newton and the Chandra X-ray Observatory, and multi-wavelength ancillary data, to investigate the X-ray emission of galaxies. First, we study the distribution and properties of the intragroup diffuse X-ray emission in compact groups (CGs) of galaxies. From a sample of 19 CGs, we find the morphology of hot gas in low-mass groups is varied, and most systems have hot gas (if any) associated with only individual members. The galaxy-linked hot gas is coupled with high …


Observational And Theoretical Investigation Of Cylindrical Line Source Blast Theory Using Meteors, Elizabeth A. Silber Jun 2014

Observational And Theoretical Investigation Of Cylindrical Line Source Blast Theory Using Meteors, Elizabeth A. Silber

Electronic Thesis and Dissertation Repository

During their passage through the atmosphere meteoroids produce a hypersonic shock which may be recorded at the ground in the form of infrasound. The first objective of this project was to use global infrasound measurements to estimate the influx of large (meter/decameter) objects to Earth and investigate which parameters of their ablation and disruption can be determined using infrasound records. A second objective was to evaluate and extend existing cylindrical line source blast theory for meteoroids by combining new observations with earlier analytical models, and validate these against centimetre-sized optical meteor observations.

The annual terrestrial influx of large meteoroids (kinetic …