Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physical Sciences and Mathematics

The Gbt Diffuse Ionized Gas Survey (Gdigs): Discrete Sources, Dylan J. Linville, Matteo Luisi, Bin Liu, T. M. Bania, Dana S. Balser, Trey V. Wenger, L. M. Haffner Oct 2023

The Gbt Diffuse Ionized Gas Survey (Gdigs): Discrete Sources, Dylan J. Linville, Matteo Luisi, Bin Liu, T. M. Bania, Dana S. Balser, Trey V. Wenger, L. M. Haffner

Publications

The Green Bank Telescope (GBT) Diffuse Ionized Gas Survey (GDIGS) traces ionized gas in the Galactic midplane by observing radio recombination line (RRL) emission from 4–8 GHz. The nominal survey zone is 32.3◦ > ℓ > −5◦, | b | < 0.5◦. Here, we analyze GDIGS Hnα ionized gas emission toward discrete sources. Using GDIGS data, we identify the velocity of 35 H II regions that have multiple detected RRL velocity components. We identify and characterize RRL emission from 88 H II regions that previously lacked measured ionized gas velocities. We also identify and characterize RRL emission from eight locations that appear to be previously-unidentified H II regions and 30 locations of RRL emission that do not appear to be H II regions based on their lack of mid-infrared emission. This latter group may be a compact component of the Galactic Diffuse Ionized Gas (DIG). There are an additional 10 discrete sources that have anomalously high RRL velocities for their locations in the Galactic plane. We compare these objects’ RRL data to 13CO, H I and mid-infrared data, and find that these sources do not have the expected 24 µm emission characteristic of H II regions. Based on this comparison we do not think these objects are H II regions, but we are unable to classify them as a known type of object.


Advancing Our Understanding Of Martian Proton Aurora Through A Coordinated Multi-Model Comparison Campaign, Andrea C. G. Hughes, Michael Scott Chaffin, Edwin J. Mierkiewicz, Justin Deighan, Rebecca Jolitz, Esa Kallio, Guillaume Gronof, Valery I. Shematovich, Dmitry Bisikalo, Cyril L. Simon Wedlund, Jasper S. Halekas, Nicholas M. Schneider, Birgit Ritter, Zachary Girazian, Sonal Jain, Jean-Claude M. C. G´Erard, Bradley Michael Hegyi Jul 2023

Advancing Our Understanding Of Martian Proton Aurora Through A Coordinated Multi-Model Comparison Campaign, Andrea C. G. Hughes, Michael Scott Chaffin, Edwin J. Mierkiewicz, Justin Deighan, Rebecca Jolitz, Esa Kallio, Guillaume Gronof, Valery I. Shematovich, Dmitry Bisikalo, Cyril L. Simon Wedlund, Jasper S. Halekas, Nicholas M. Schneider, Birgit Ritter, Zachary Girazian, Sonal Jain, Jean-Claude M. C. G´Erard, Bradley Michael Hegyi

Publications

Proton aurora are the most commonly observed yet least studied type of aurora at Mars. In order to better understand the physics and driving processes of Martian proton aurora, we undertake a multi-model comparison campaign. We compare results from four different proton/hydrogen precipitation models with unique abilities to represent Martian proton aurora: Jolitz model (3-D Monte Carlo), Kallio model (3-D Monte Carlo), Bisikalo/Shematovich et al. model (1-D kinetic Monte Carlo), and Gronoff et al. model (1-D kinetic). This campaign is divided into two steps: an inter-model comparison and a data-model comparison. The inter-model comparison entails modeling five different representative cases …


Estimation Of The Kelvin–Helmholtz Unstable Boundary, Xuanye Ma Jul 2023

Estimation Of The Kelvin–Helmholtz Unstable Boundary, Xuanye Ma

Publications

The Kelvin–Helmholtz (KH) instability is one of the most important mechanisms of the viscous like interaction between the solar wind and the magnetosphere (MSP), which transport the mass, energy, momentum, and magnetic flux. Thus, it is important to examine whether the magnetopause boundary is KH unstable or not. Based on the KH onset conditions, this report proposes to use a matrix to identify the most KH unstable direction based on the in-situ measurements of the density, velocity, and magnetic field in the MSP and magneto sheath. The range of the KH unstable direction can be easily estimated based on the …


Bayesian Inference For The White Dwarf Initial-Final Mass Relation, Nathan Stein, Ted Von Hippel, David Van Dyk, Steven Degennaro, Elizabeth Jeffery, Bill Jefferys Jun 2023

Bayesian Inference For The White Dwarf Initial-Final Mass Relation, Nathan Stein, Ted Von Hippel, David Van Dyk, Steven Degennaro, Elizabeth Jeffery, Bill Jefferys

Publications

Stars lose mass as they age, and understanding mass loss is important for understanding stellar evolution. The initial-final mass relation (IFMR) is the relationship between a white dwarf’s initial mass on the main sequence and its final mass. We have developed a new method for fitting the IFMR based on a Bayesian analysis of photometric observations, combining deterministic models of stellar evolution in an internally coherent way. No mass data are used. Our method yields precise inferences (with uncertainties) for a parameterized linear IFMR. Our method can also return posterior distributions of white dwarf initial and final masses.


Databases And Inter-Connectivity In Ground-Based Astronomy, Ted Von Hippel, C. M. Mountain Jun 2023

Databases And Inter-Connectivity In Ground-Based Astronomy, Ted Von Hippel, C. M. Mountain

Publications

Optical and infrared ground-based astronomy is undergoing a renaissance. Advances in material technology, system modeling, and the ability to correct atmospheric distortions in real time have produced a new generation of powerful, large telescopes. An equally profound revolution stems from the availability of large observational databases that span the electromagnetic spectrum. The increased use of such databases as well as the need to operate the new telescopes efficiently requires the development of a National or International Virtual Observatory to set standards for astronomical database formats, data quality assurance, and access protocols, and also to provide all-inclusive centers for data products.


Periodicities And Plasma Density Structure Of Jupiter’S Dawnside Magnetosphere, Xuanye Ma, A.A. Schok, P.A. Delamere, B. Mino, P.A. Damiano, B. Zhang, A. Sciola Feb 2023

Periodicities And Plasma Density Structure Of Jupiter’S Dawnside Magnetosphere, Xuanye Ma, A.A. Schok, P.A. Delamere, B. Mino, P.A. Damiano, B. Zhang, A. Sciola

Publications

The ability to quantify variations in magnetic field topology and density within Jupiter’s magnetosphere is an important step in understanding the overall structure and dynamics. The Juno spacecraft has provided a rich data set in the dawnside magnetosphere. The recent Grid Agnostic MHD for Extended Research Applications (GAMERA) global simulation study by Zhang et al. (2021) showed a highly structured plasmadisc with closed magnetic field lines mapping between the outer dawn-tail flank and the high latitude polar region. To test these model predictions, we examined Juno’s magnetic field data and electron/energetic particle data to categorize portions of orbits 1-15 into …