Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Astrophysics and Astronomy

California Polytechnic State University, San Luis Obispo

SOFIA

Publication Year

Articles 1 - 8 of 8

Full-Text Articles in Physical Sciences and Mathematics

Optimizing The Telescope Assembly Alignment Simulator For Sofia, Zoe E. Sharp, Alex Quyenvo, Jennifer Briggs, Brian Eney Oct 2016

Optimizing The Telescope Assembly Alignment Simulator For Sofia, Zoe E. Sharp, Alex Quyenvo, Jennifer Briggs, Brian Eney

STAR Program Research Presentations

The Stratospheric Observatory for Infrared Astronomy (SOFIA) conducts research on a modified Boeing 747sp aircraft. By using a variety of infrared science instruments mounted on a 2.7 meter telescope, researchers can make discoveries about the galactic center, star formation, and various topics associated with a deeper understanding of our universe. To efficiently collect data through the SOFIA instruments, the instruments must be tested and prepared prior to being placed on the aircraft. Therefore, with the use of the Telescope Assembly Alignment Simulator (TAAS), researchers can design and construct improvements needed for these instruments to efficiently perform while in flight. The …


Validation Of Data Reduction Interactive Pipeline For Forcast On Sofia, Brent C. Nicklas, William T. Reach, Sachindev S. Shenoy Aug 2013

Validation Of Data Reduction Interactive Pipeline For Forcast On Sofia, Brent C. Nicklas, William T. Reach, Sachindev S. Shenoy

STAR Program Research Presentations

The Stratospheric Observatory For Infrared Astronomy (SOFIA) is a heavily modified Boeing 747SP aircraft equipped with 2.5 meter reflecting telescope. Among the suite of instruments onboard is the Faint Object Infrared Camera for the SOFIA Telescope (FORCAST). FORCAST features two cameras for short (5-25 microns) and long (25-40 microns) wavelength detection. Making infrared observations in these wavelengths presents a challenge because the telescope and sky emit background radiation magnitudes brighter than the object of interest. Because of this, the raw FORCAST data must be corrected and reduced. The Data Reduction Interactive Pipeline (DRIP) was developed to process all FORCAST data …


Analyzing The Performance Of The Sofia Infrared Telescope, Sarah M. Bass, Jeffrey Van Cleve, Zaheer Ali Aug 2013

Analyzing The Performance Of The Sofia Infrared Telescope, Sarah M. Bass, Jeffrey Van Cleve, Zaheer Ali

STAR Program Research Presentations

The Stratospheric Observatory for Infrared Astronomy (SOFIA) is an airborne near-space observatory onboard a modified Boeing 747-SP aircraft, which flies at altitudes of 45,000 ft., above 99% of the Earth’s water vapor. SOFIA contains an effective 2.5 m infrared (IR) telescope that has a dichroic tertiary mirror, reflecting IR and visible wavelengths to the science instrument (SI) and focal plane imager (FPI), respectively. To date, seven different SIs have been designed to cover a wide range of wavelengths and spectral resolutions. Since the telescope operates in the infrared, different techniques, including chopping, nodding, and dithering, are used to reduce the …


Tools And Methods To Optimize The Analysis Of Telescopic Performance Metrics On Sofia, Steven R. Wilson, Holger Jakob, Stefan Teufel, Zaheer Ali, Jeffrey Van Cleve, Brian Eney, Greg Perryman Aug 2013

Tools And Methods To Optimize The Analysis Of Telescopic Performance Metrics On Sofia, Steven R. Wilson, Holger Jakob, Stefan Teufel, Zaheer Ali, Jeffrey Van Cleve, Brian Eney, Greg Perryman

STAR Program Research Presentations

SOFIA is an infrared observatory mounted on a modified 747 engineered to do infrared astronomy at 45000 feet. The telescope equipment contains a number of sensors and stabilizers that allow the telescope to capture images while mounted in a moving plane. We have developed methods to analyze the performance of the telescope assembly that will help improve the stabilization and image capturing performance of the observatory. Here we present reusable methods to analyze telescope performance data that will enable improvements in the quality of the scientific data that is produced by the SOFIA. This poster focuses on the multi-flight performance …


Flitecam Data Process Validation, Jesse K. Tsai, Sachindev S. Shenoy, Brent Cedric Nicklas, Zaheer Ali, William T. Reach Aug 2013

Flitecam Data Process Validation, Jesse K. Tsai, Sachindev S. Shenoy, Brent Cedric Nicklas, Zaheer Ali, William T. Reach

STAR Program Research Presentations

FLITECAM Data Processing Validation

Many of the challenges that come from working with astronomical imaging arise from the reduction of raw data into scientifically meaningful data. First Light Infrared Test CAMera (FLITECAM) is an infrared camera operating in the 1.0–5.5 μm waveband on board SOFIA (Stratospheric Observatory For Infrared Astronomy). Due to the significant noise from the atmosphere and the camera itself, astronomers have developed many methods to reduce the effects of atmospheric and instrumental emission. The FLITECAM Data Reduction Program (FDRP) is a program, developed at SOFIA Science Center, subtracts darks, removes flats, and dithers images.

This project contains …


Designing A Cold Source To Be Integrated With The Existing Telescope Assembly Alignment Simulator, Rebecca L. Salvemini, Carey Baxter, Zaheer Ali, Greg Perryman, Robert Thompson, Daniel Nolan Aug 2013

Designing A Cold Source To Be Integrated With The Existing Telescope Assembly Alignment Simulator, Rebecca L. Salvemini, Carey Baxter, Zaheer Ali, Greg Perryman, Robert Thompson, Daniel Nolan

STAR Program Research Presentations

The stratospheric observatory for infrared astronomy (SOFIA), is a modified Boeing 747-SP with a 2.5m telescope mounted inside. SOFIA flies at an altitude of 45,000 feet, above 99% of the water vapor in the atmosphere, allowing transmission of most infrared radiation. SOFIA has seven different science instruments (SI) that can be used to collect astronomical data, enabling scientists to look at many different wavelengths of infrared and visible radiation.


Chemical Compatibility Study Of Anti-Corrosive Materials For Stratospheric Observatory For Infrared Astronomy (Sofia), Belyn Nicole Grant, Zaheer Ali, Greg Perryman, Stefan Teufel, Brian Eney Jan 2013

Chemical Compatibility Study Of Anti-Corrosive Materials For Stratospheric Observatory For Infrared Astronomy (Sofia), Belyn Nicole Grant, Zaheer Ali, Greg Perryman, Stefan Teufel, Brian Eney

STAR Program Research Presentations

The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a telescope designed to capture infrared light from deep space, mounted in a highly modified Boeing 747 SP. Portions of the aircraft interior are showing signs of corrosion, and need to be coated with a material that will prevent further corrosion. Up to date, current anti-corrosive materials commonly used on aircrafts are incompatible with the very thin aluminum surface of the telescope mirrors. The purpose of our study is to find an effective corrosion preventive material with low outgassing properties.


Telescope Assembly Alignment Simulator Performance Optimization, Joshua G. Thompson, Brian Eney, Zaheer Ali, Bob Thompson Aug 2012

Telescope Assembly Alignment Simulator Performance Optimization, Joshua G. Thompson, Brian Eney, Zaheer Ali, Bob Thompson

STAR Program Research Presentations

The Telescope Assembly Alignment Simulator (TAAS) calibrates scientific instruments (SI’s) that are installed on the Stratospheric Observatory For Infrared Astronomy (SOFIA). An SI’s accuracy is directly dependent on the consistent performance of the TAAS, which has never been fully characterized. After designing various thermal and optical experiments to identify the current unknowns of TAAS, we now have a far better grasp on how the equipment behaves.