Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Gravitons To Photons--Attenuation Of Gravitational Waves, Preston Jones, Douglas Singleton Nov 2015

Gravitons To Photons--Attenuation Of Gravitational Waves, Preston Jones, Douglas Singleton

Publications

In this essay, we examine the response of an Unruh–DeWitt (UD) detector (a quantum two-level system) to a gravitational wave background. The spectrum of the UD detector is of the same form as some scattering processes or three body decays such as muon-electron scattering or muon decay. Based on this similarity, we propose that the UD detector response implies a “decay” or attenuation of gravitons, G, into photons, γ, via G+G→γ+γ or G→γ+γ+G. Over large distances such a decay/attenuation may have consequences in regard to the detection of gravitational waves.


Double Compact Objects. Iii. Gravitational-Wave Detection Rates, Michal Dominik, Emanuele Berti, Richard O'Shaughnessy, Ilya Mandel, Krzysztof Belczynski, Christopher Fryer, Daniel E. Holz, Tomasz Bulik, Francesco Pannarale Jun 2015

Double Compact Objects. Iii. Gravitational-Wave Detection Rates, Michal Dominik, Emanuele Berti, Richard O'Shaughnessy, Ilya Mandel, Krzysztof Belczynski, Christopher Fryer, Daniel E. Holz, Tomasz Bulik, Francesco Pannarale

Physics and Astronomy Faculty Publications and Presentations

The unprecedented range of second-generation gravitational-wave (GW) observatories calls for refining the predictions of potential sources and detection rates. The coalescence of double compact objects (DCOs)—i.e., neutron star–neutron star (NS–NS), black hole–neutron star (BH–NS), and black hole–black hole (BH–BH) binary systems—is the most promising source of GWs for these detectors. We compute detection rates of coalescing DCOs in second-generation GW detectors using the latest models for their cosmological evolution, and implementing inspiral-merger-ringdown gravitational waveform models in our signal-to-noise ratio calculations. We find that (1) the inclusion of the merger/ringdown portion of the signal does not significantly affect rates for NS–NS …


Gravitational-Wave Mediated Preheating, Stephon Alexander, Sam Cormack, Antonino Marcianò, Nicolás Yunes Apr 2015

Gravitational-Wave Mediated Preheating, Stephon Alexander, Sam Cormack, Antonino Marcianò, Nicolás Yunes

Dartmouth Scholarship

We propose a new preheating mechanism through the coupling of the gravitational field to both the inflaton and matter fields, without direct inflaton–matter couplings. The inflaton transfers power to the matter fields through interactions with gravitational waves, which are exponentially enhanced due to an inflation–graviton coupling. One such coupling is the product of the inflaton to the Pontryagin density, as in dynamical Chern–Simons gravity. The energy scales involved are constrained by requiring that preheating happens fast during matter domination.