Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Astrophysics and Astronomy

PDF

West Virginia University

Pulsars

Articles 1 - 7 of 7

Full-Text Articles in Physical Sciences and Mathematics

Applications Of Digital Filters In Radio Astronomy, Joseph William Kania Jan 2023

Applications Of Digital Filters In Radio Astronomy, Joseph William Kania

Graduate Theses, Dissertations, and Problem Reports

The radio sky spans tens of orders of magnitude in length, density, and time.
In this thesis, using novel filtering techniques and two different telescopes,
we investigate two tracers of cosmic structure: Baryon Acoustic Oscillations
(BAOs) and Fast Radio Bursts (FRBs). BAOs formed as the universe cooled
after the Big Bang. BAOs provide a fiducial length scale of the universe
throughout cosmic time and thus can be used to understand how the universe
is evolving. FRBs are very bright, short timescale, bursts of as-yet unknown
origin which occur uniformly on the sky at a rate of a few thousand per …


Forecasting And Optimizing Sensitivity To Low-Frequency Gravitational Waves, Andrew Ryan Kaiser Jan 2023

Forecasting And Optimizing Sensitivity To Low-Frequency Gravitational Waves, Andrew Ryan Kaiser

Graduate Theses, Dissertations, and Problem Reports

Pulsars are among the most exotic objects in our Universe. These rapidly
spinning, high magnetic field neutron stars can be used for a wide range of
scientific studies: from the makeup of their own extremely dense and poorly
understood interior to using their extremely regular signals to detect gravita-
tional waves (GWs). Pulsar timing continues to expand to broader communi-
ties, with larger and more sensitive radio telescopes planned and partnerships
between pulsar timing arrays (PTAs) that span the entire globe. A realm of
new physics with the detection of a background hum of gravitational waves
from black holes merging …


Polarization Properties Of Millisecond Pulsars: Astrophysical Interpretations And Applications, Haley Megan Wahl Jan 2022

Polarization Properties Of Millisecond Pulsars: Astrophysical Interpretations And Applications, Haley Megan Wahl

Graduate Theses, Dissertations, and Problem Reports

Pulsars are some of the most extreme objects in the universe; their small yet incredibly predictable spin periods coupled with their strong magnetic fields make them ideal laboratories for study. Not only are they interesting objects themselves, but they can also help us probe different astrophysical environments, such as the interstellar magnetic field and the solar corona.

These stars are highly polarized, and that polarization comes into play in various fields of pulsar physics (such as constraining models of pulsar emission), but obtaining that polarization information can be difficult, as the polarization properties of the light can change as the …


Bayesian Methods For Multi-Messenger Analysis Of Supermassive Black Hole Binaries: Pulsars And Quasars And Gravitational Waves, Oh My!, Caitlin A. Witt Jan 2022

Bayesian Methods For Multi-Messenger Analysis Of Supermassive Black Hole Binaries: Pulsars And Quasars And Gravitational Waves, Oh My!, Caitlin A. Witt

Graduate Theses, Dissertations, and Problem Reports

Supermassive black hole binaries (SMBHBs) can lurk, often unseen, in the centers of post-merger galaxies, and pulsar timing arrays (PTAs) are rapidly approaching the sensitivities required to detect nanohertz gravitational waves (GWs) from these giant pairs. Independently, numerous electromagnetic surveys are seeking evidence of these dynamic duos’ effects on their host galaxies by searching for periodicities in time-domain observations. Combining these two methods to use multi-messenger techniques allows us to learn more about these binaries than using one messenger alone. In this thesis, we have created Bayesian methods to search for SMBHBs using electromagnetic observations of quasars and through GW …


Pulsar Noise Processes And Emission Physics, Brent Jacob Shapiro-Albert Jan 2021

Pulsar Noise Processes And Emission Physics, Brent Jacob Shapiro-Albert

Graduate Theses, Dissertations, and Problem Reports

Precision pulsar timing can be used to study many different astrophysically interesting phenomena, from the emission mechanism of pulsars to the detection of nanohertz gravitational waves. These analyses span topics such as studying the single pulses of pulsars and analyzing years of pulsar timing data from pulsar timing arrays (PTAs). Single-pulse studies allow us to glean information on the emission physics of pulsars on their shortest timescales, while PTA observations of millisecond pulsars (MSPs) allow us to not only study the pulsars themselves, but also probe the interstellar medium (ISM) and constrain the noise in the data for precision pulsar …


Modeling The Galactic Compact Binary Neutron Star Population And Studying The Double Pulsar System, Nihan Pol Jan 2020

Modeling The Galactic Compact Binary Neutron Star Population And Studying The Double Pulsar System, Nihan Pol

Graduate Theses, Dissertations, and Problem Reports

Binary neutron star (BNS) systems consisting of at least one neutron star provide an avenue for testing a broad range of physical phenomena ranging from tests of General Relativity to probing magnetospheric physics to understanding the behavior of matter in the densest environments in the Universe. Ultra-compact BNS systems with orbital periods less than few tens of minutes emit gravitational waves with frequencies ~mHz and are detectable by the planned space-based Laser Interferometer Space Antenna (LISA), while merging BNS systems produce a chirping gravitational wave signal that can be detected by the ground-based Laser Interferometer Gravitational-Wave Observatory (LIGO). Thus, BNS …


Multi-Telescope Radio Observations For Low Frequency Gravitational Wave Astrophysics, Megan L. Jones Jan 2018

Multi-Telescope Radio Observations For Low Frequency Gravitational Wave Astrophysics, Megan L. Jones

Graduate Theses, Dissertations, and Problem Reports

The North American Nanohertz Observatory for Gravitational Waves (NANOGrav) has the principal goal of detecting gravitational waves (GWs) in the nanohertz part of the spectrum using pulsar timing. This thesis presents results from radio campaigns at frequencies from 322 MHz to 10 GHz aimed at both multi-messenger constraints on GW sources and improving the timing sensitivity. The primary expected source of GWs at the nanohertz frequencies to which pulsar timing is sensitive are supermassive black hole (SMBH) binaries. We investigate a purported SMBH displaced from the galactic photocenter in NGC 3115. We explore the possibilities that the source is a …