Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

De Novo Drug Design Using Transformer-Based Machine Translation And Reinforcement Learning Of An Adaptive Monte Carlo Tree Search, Dony Ang, Cyril Rakovski, Hagop S. Atamian Jan 2024

De Novo Drug Design Using Transformer-Based Machine Translation And Reinforcement Learning Of An Adaptive Monte Carlo Tree Search, Dony Ang, Cyril Rakovski, Hagop S. Atamian

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

The discovery of novel therapeutic compounds through de novo drug design represents a critical challenge in the field of pharmaceutical research. Traditional drug discovery approaches are often resource intensive and time consuming, leading researchers to explore innovative methods that harness the power of deep learning and reinforcement learning techniques. Here, we introduce a novel drug design approach called drugAI that leverages the Encoder–Decoder Transformer architecture in tandem with Reinforcement Learning via a Monte Carlo Tree Search (RL-MCTS) to expedite the process of drug discovery while ensuring the production of valid small molecules with drug-like characteristics and strong binding affinities towards …


A Memory Efficient Deep Recurrent Q-Learning Approach For Autonomous Wildfire Surveillance, Jeremy A. Cantor Jan 2024

A Memory Efficient Deep Recurrent Q-Learning Approach For Autonomous Wildfire Surveillance, Jeremy A. Cantor

UNF Graduate Theses and Dissertations

Previous literature demonstrates that autonomous UAVs (unmanned aerial vehicles) have the po- tential to be utilized for wildfire surveillance. This advanced technology empowers firefighters by providing them with critical information, thereby facilitating more informed decision-making processes. This thesis applies deep Q-learning techniques to the problem of control policy design under the objective that the UAVs collectively identify the maximum number of locations that are under fire, assuming the UAVs can share their observations. The prohibitively large state space underlying the control policy motivates a neural network approximation, but prior work used only convolutional layers to extract spatial fire information from …


Reinforcement Learning: Applying Low Discrepancy Action Selection To Deep Deterministic Policy Gradient, Aleksandr Svishchev Jan 2024

Reinforcement Learning: Applying Low Discrepancy Action Selection To Deep Deterministic Policy Gradient, Aleksandr Svishchev

Electronic Theses and Dissertations

Reinforcement learning (RL) is a subfield of machine learning concerned with agents learning to behave optimally by interacting with an environment. One of the most important topics in RL is how the agent should explore, that is, how to choose actions in order to rate their impact on long-term reward. For example, a simple baseline strategy might be uniformly random action selection. This thesis investigates the heuristic idea that agents will learn faster if they explore by factoring the environment’s state into their decision and intentionally choose actions which are as different as possible from what they have previously observed. …