Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Applying Deep Learning For Cell Detection In Time-Lapse Microscopic Images, Jay Patel Aug 2020

Applying Deep Learning For Cell Detection In Time-Lapse Microscopic Images, Jay Patel

Honors Theses

The budding yeast Saccharomyces cerevisiae is an effective model for studying cellular aging. We can measure the lifespan of yeast cells in two ways: replicative and chronological lifespans. Chronological focuses on the time that a cell can survive. The replicative lifespan (RLS) is the number of cell divisions that a single mother cell can go through before ceases to be dividing. RLS is a measurement of individual cells and is more informative on the aging process than in chronological lifespan. Many genes that influence yeast RLS have been shown to be highly conserved and have a similar effect on aging …


Human Facial Emotion Recognition System In A Real-Time, Mobile Setting, Claire Williamson Jun 2020

Human Facial Emotion Recognition System In A Real-Time, Mobile Setting, Claire Williamson

Honors Theses

The purpose of this project was to implement a human facial emotion recognition system in a real-time, mobile setting. There are many aspects of daily life that can be improved with a system like this, like security, technology and safety.

There were three main design requirements for this project. The first was to get an accuracy rate of 70%, which must remain consistent for people with various distinguishing facial features. The second goal was to have one execution of the system take no longer than half of a second to keep it as close to real time as possible. Lastly, …


A Machine Learning Method For Predicting Liver Transplant Survival Outcomes, Brandon C. Revels May 2020

A Machine Learning Method For Predicting Liver Transplant Survival Outcomes, Brandon C. Revels

Honors Theses

For years, doctors have utilized the Model for End-stage Liver Disease (MELD) score to aid in the allocation of organs for liver transplants (LT). A major issue with using the MELD score to allocate organs for transplantation is that the MELD score does not accurately predict post-transplant survival. This research project aims to investigate the use of machine learning (ML) methods to predict LT survival using the newer Scientific Registry of Transplant Recipients (SRTR) dataset. For this project, death and nonfatal graft failure were treated equally as both cases result in a loss of a donated organ. The ML algorithms …