Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Physical Sciences and Mathematics

An Ai-Based Framework For Studying Visual Diversity Of Urban Neighborhoods And Its Relationship With Socio-Demographic Variables, Md Amiruzzaman, Ye Zhao, Stefanie Amiruzzaman, Aryn C. Karpinski, Tsung Heng Wu Dec 2022

An Ai-Based Framework For Studying Visual Diversity Of Urban Neighborhoods And Its Relationship With Socio-Demographic Variables, Md Amiruzzaman, Ye Zhao, Stefanie Amiruzzaman, Aryn C. Karpinski, Tsung Heng Wu

Computer Science Faculty Publications

This study presents a framework to study quantitatively geographical visual diversities of urban neighborhood from a large collection of street-view images using an Artificial Intelligence (AI)-based image segmentation technique. A variety of diversity indices are computed from the extracted visual semantics. They are utilized to discover the relationships between urban visual appearance and socio-demographic variables. This study also validates the reliability of the method with human evaluators. The methodology and results obtained from this study can potentially be used to study urban features, locate houses, establish services, and better operate municipalities.


Can Lethal Autonomous Weapons Be Just?, Noreen L. Herzfeld, Robert H. Latiff Jan 2022

Can Lethal Autonomous Weapons Be Just?, Noreen L. Herzfeld, Robert H. Latiff

Computer Science Faculty Publications

In 2018 the United States Department of Defense (DoD) created a new Joint Artificial Intelligence Center to study the adoption of AI by the military. Their strategy, outlined in a document entitled, “Harnessing AI to Advance Our Security and Prosperity,” proposes to accelerate the adoption of AI in the military by fostering a culture of experimentation and calculated risk taking, noting that AI will change the character of the future battlefield and, even more, the pace of battle. Is there any way to ensure that this future battlefield will be just? Can the age-old precepts of just warfare help guide …


Camouflaged Poisoning Attack On Graph Neural Networks, Chao Jiang, Yi He, Richard Chapman, Hongyi Wu Jan 2022

Camouflaged Poisoning Attack On Graph Neural Networks, Chao Jiang, Yi He, Richard Chapman, Hongyi Wu

Computer Science Faculty Publications

Graph neural networks (GNNs) have enabled the automation of many web applications that entail node classification on graphs, such as scam detection in social media and event prediction in service networks. Nevertheless, recent studies revealed that the GNNs are vulnerable to adversarial attacks, where feeding GNNs with poisoned data at training time can lead them to yield catastrophically devastative test accuracy. This finding heats up the frontier of attacks and defenses against GNNs. However, the prior studies mainly posit that the adversaries can enjoy free access to manipulate the original graph, while obtaining such access could be too costly in …


Multi-User Eye-Tracking, Bhanuka Mahanama Jan 2022

Multi-User Eye-Tracking, Bhanuka Mahanama

Computer Science Faculty Publications

The human gaze characteristics provide informative cues on human behavior during various activities. Using traditional eye trackers, assessing gaze characteristics in the wild requires a dedicated device per participant and therefore is not feasible for large-scale experiments. In this study, we propose a commodity hardware-based multi-user eye-tracking system. We leverage the recent advancements in Deep Neural Networks and large-scale datasets for implementing our system. Our preliminary studies provide promising results for multi-user eye-tracking on commodity hardware, providing a cost-effective solution for large-scale studies.


Theory Entity Extraction For Social And Behavioral Sciences Papers Using Distant Supervision, Xin Wei, Lamia Salsabil, Jian Wu Jan 2022

Theory Entity Extraction For Social And Behavioral Sciences Papers Using Distant Supervision, Xin Wei, Lamia Salsabil, Jian Wu

Computer Science Faculty Publications

Theories and models, which are common in scientific papers in almost all domains, usually provide the foundations of theoretical analysis and experiments. Understanding the use of theories and models can shed light on the credibility and reproducibility of research works. Compared with metadata, such as title, author, keywords, etc., theory extraction in scientific literature is rarely explored, especially for social and behavioral science (SBS) domains. One challenge of applying supervised learning methods is the lack of a large number of labeled samples for training. In this paper, we propose an automated framework based on distant supervision that leverages entity mentions …


A Synthetic Prediction Market For Estimating Confidence In Published Work, Sarah Rajtmajer, Christopher Griffin, Jian Wu, Robert Fraleigh, Laxmann Balaji, Anna Squicciarini, Anthony Kwasnica, David Pennock, Michael Mclaughlin, Timothy Fritton, Nishanth Nakshatri, Arjun Menon, Sai Ajay Modukuri, Rajal Nivargi, Xin Wei, Lee Giles Jan 2022

A Synthetic Prediction Market For Estimating Confidence In Published Work, Sarah Rajtmajer, Christopher Griffin, Jian Wu, Robert Fraleigh, Laxmann Balaji, Anna Squicciarini, Anthony Kwasnica, David Pennock, Michael Mclaughlin, Timothy Fritton, Nishanth Nakshatri, Arjun Menon, Sai Ajay Modukuri, Rajal Nivargi, Xin Wei, Lee Giles

Computer Science Faculty Publications

[First paragraph] Concerns about the replicability, robustness and reproducibility of findings in scientific literature have gained widespread attention over the last decade in the social sciences and beyond. This attention has been catalyzed by and has likewise motivated a number of large-scale replication projects which have reported successful replication rates between 36% and 78%. Given the challenges and resources required to run high-powered replication studies, researchers have sought other approaches to assess confidence in published claims. Initial evidence has supported the promise of prediction markets in this context. However, they require the coordinated, sustained effort of collections of human experts …


Introducing A Real-Time Advanced Eye Movements Analysis Pipeline, Gavindya Jayawardana Jan 2022

Introducing A Real-Time Advanced Eye Movements Analysis Pipeline, Gavindya Jayawardana

Computer Science Faculty Publications

Real-Time Advanced Eye Movements Analysis Pipeline (RAEMAP) is an advanced pipeline to analyze traditional positional gaze measurements as well as advanced eye gaze measurements. The proposed implementation of RAEMAP includes real-time analysis of fixations, saccades, gaze transition entropy, and low/high index of pupillary activity. RAEMAP will also provide visualizations of fixations, fixations on AOIs, heatmaps, and dynamic AOI generation in real-time. This paper outlines the proposed architecture of RAEMAP.


Customer Gaze Estimation In Retail Using Deep Learning, Shashimal Senarath, Primesh Pathirana, Dulani Meedeniya, Sampath Jayarathna Jan 2022

Customer Gaze Estimation In Retail Using Deep Learning, Shashimal Senarath, Primesh Pathirana, Dulani Meedeniya, Sampath Jayarathna

Computer Science Faculty Publications

At present, intelligent computing applications are widely used in different domains, including retail stores. The analysis of customer behaviour has become crucial for the benefit of both customers and retailers. In this regard, the concept of remote gaze estimation using deep learning has shown promising results in analyzing customer behaviour in retail due to its scalability, robustness, low cost, and uninterrupted nature. This study presents a three-stage, three-attention-based deep convolutional neural network for remote gaze estimation in retail using image data. In the first stage, we design a mechanism to estimate the 3D gaze of the subject using image data …


Visual Descriptor Extraction From Patent Figure Captions: A Case Study Of Data Efficiency Between Bilstm And Transformer, Xin Wei, Jian Wu, Kehinde Ajayi, Diane Oyen Jan 2022

Visual Descriptor Extraction From Patent Figure Captions: A Case Study Of Data Efficiency Between Bilstm And Transformer, Xin Wei, Jian Wu, Kehinde Ajayi, Diane Oyen

Computer Science Faculty Publications

Technical drawings used for illustrating designs are ubiquitous in patent documents, especially design patents. Different from natural images, these drawings are usually made using black strokes with little color information, making it challenging for models trained on natural images to recognize objects. To facilitate indexing and searching, we propose an effective and efficient visual descriptor model that extracts object names and aspects from patent captions to annotate benchmark patent figure datasets. We compared two state-of-the-art named entity recognition (NER) models and found that with a limited number of annotated samples, the BiLSTM-CRF model outperforms the Transformer model by a significant …


Online Deep Learning From Doubly-Streaming Data, Heng Lian, John S. Atwood, Bo-Jian Hou, Jian Wu, Yi He Jan 2022

Online Deep Learning From Doubly-Streaming Data, Heng Lian, John S. Atwood, Bo-Jian Hou, Jian Wu, Yi He

Computer Science Faculty Publications

This paper investigates a new online learning problem with doubly-streaming data, where the data streams are described by feature spaces that constantly evolve, with new features emerging and old features fading away. A plausible idea to deal with such data streams is to establish a relationship between the old and new feature spaces, so that an online learner can leverage the knowledge learned from the old features to better the learning performance on the new features. Unfortunately, this idea does not scale up to high-dimensional multimedia data with complex feature interplay, which suffers a tradeoff between onlineness, which biases shallow …


Machine Learning-Based Event Generator For Electron-Proton Scattering, Y. Alanazi, P. Ambrozewicz, M. Battaglieri, A.N. Hiller Blin, M. P. Kuchera, Y. Li, T. Liu, R. E. Mcclellan, W. Melnitchouk, E. Pritchard, M. Robertson, N. Sato, R. Strauss, L. Velasco Jan 2022

Machine Learning-Based Event Generator For Electron-Proton Scattering, Y. Alanazi, P. Ambrozewicz, M. Battaglieri, A.N. Hiller Blin, M. P. Kuchera, Y. Li, T. Liu, R. E. Mcclellan, W. Melnitchouk, E. Pritchard, M. Robertson, N. Sato, R. Strauss, L. Velasco

Computer Science Faculty Publications

We present a new machine learning-based Monte Carlo event generator using generative adversarial networks (GANs) that can be trained with calibrated detector simulations to construct a vertex-level event generator free of theoretical assumptions about femtometer scale physics. Our framework includes a GAN-based detector folding as a fast-surrogate model that mimics detector simulators. The framework is tested and validated on simulated inclusive deep-inelastic scattering data along with existing parametrizations for detector simulation, with uncertainty quantification based on a statistical bootstrapping technique. Our results provide for the first time a realistic proof of concept to mitigate theory bias in inferring vertex-level event …