Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Physical Sciences and Mathematics

Multi-Slam Systems For Fault-Tolerant Simultaneous Localization And Mapping, Samer Nashed Mar 2024

Multi-Slam Systems For Fault-Tolerant Simultaneous Localization And Mapping, Samer Nashed

Doctoral Dissertations

Mobile robots need accurate, high fidelity models of their operating environments in order to complete their tasks safely and efficiently. Generating these models is most often done via Simultaneous Localization and Mapping (SLAM), a paradigm where the robot alternatively estimates the most up-to-date model of the environment and its position relative to this model as it acquires new information from its sensors over time. Because robots operate in many different environments with different compute, memory, sensing, and form constraints, the nature and quality of information available to individual instances of different SLAM systems varies substantially. `One-size-fits-all' solutions are thus exceedingly …


Efficient Self-Supervised Deep Sensorimotor Learning In Robotics, Takeshi Takahashi Oct 2019

Efficient Self-Supervised Deep Sensorimotor Learning In Robotics, Takeshi Takahashi

Doctoral Dissertations

Deep learning has been successful in a variety of applications, such as object recognition, video games, and machine translation. Deep neural networks can automatically learn important features given large training datasets. However, the success of deep learning in robotic systems in the real world is still limited mainly because obtaining large datasets and labeling are costly. As a result, much of the successful work in deep learning has been limited to domains where large datasets are readily available or easily collected. To address this issue, I propose a framework for acquiring re-usable skills efficiently combining intrinsic motivation and the control …


Abstractions In Reasoning For Long-Term Autonomy, Kyle Hollins Wray Jul 2019

Abstractions In Reasoning For Long-Term Autonomy, Kyle Hollins Wray

Doctoral Dissertations

The path to building adaptive, robust, intelligent agents has led researchers to develop a suite of powerful models and algorithms for agents with a single objective. However, in recent years, attempts to use this monolithic approach to solve an ever-expanding set of complex real-world problems, which increasingly include long-term autonomous deployments, have illuminated challenges in its ability to scale. Consequently, a fragmented collection of hierarchical and multi-objective models were developed. This trend continues into the algorithms as well, as each approximates an optimal solution in a different manner for scalability. These models and algorithms represent an attempt to solve pieces …


Integration Of Robotic Perception, Action, And Memory, Li Yang Ku Oct 2018

Integration Of Robotic Perception, Action, And Memory, Li Yang Ku

Doctoral Dissertations

In the book "On Intelligence", Hawkins states that intelligence should be measured by the capacity to memorize and predict patterns. I further suggest that the ability to predict action consequences based on perception and memory is essential for robots to demonstrate intelligent behaviors in unstructured environments. However, traditional approaches generally represent action and perception separately---as computer vision modules that recognize objects and as planners that execute actions based on labels and poses. I propose here a more integrated approach where action and perception are combined in a memory model, in which a sequence of actions can be planned based on …


Belief-Space Planning For Resourceful Manipulation And Mobility, Dirk Ruiken Jul 2017

Belief-Space Planning For Resourceful Manipulation And Mobility, Dirk Ruiken

Doctoral Dissertations

Robots are increasingly expected to work in partially observable and unstructured environments. They need to select actions that exploit perceptual and motor resourcefulness to manage uncertainty based on the demands of the task and environment. The research in this dissertation makes two primary contributions. First, it develops a new concept in resourceful robot platforms called the UMass uBot and introduces the sixth and seventh in the uBot series. uBot-6 introduces multiple postural configurations that enable different modes of mobility and manipulation to meet the needs of a wide variety of tasks and environmental constraints. uBot-7 extends this with the use …


Learning Parameterized Skills, Bruno Castro Da Silva Mar 2015

Learning Parameterized Skills, Bruno Castro Da Silva

Doctoral Dissertations

One of the defining characteristics of human intelligence is the ability to acquire and refine skills. Skills are behaviors for solving problems that an agent encounters often—sometimes in different contexts and situations—throughout its lifetime. Identifying important problems that recur and retaining their solutions as skills allows agents to more rapidly solve novel problems by adjusting and combining their existing skills. In this thesis we introduce a general framework for learning reusable parameterized skills. Reusable skills are parameterized procedures that—given a description of a problem to be solved—produce appropriate behaviors or policies. They can be sequentially and hierarchically combined with other …


Episodic Non-Markov Localization: Reasoning About Short-Term And Long-Term Features, Joydeep Biswas, Manuela M. Veloso Jan 2014

Episodic Non-Markov Localization: Reasoning About Short-Term And Long-Term Features, Joydeep Biswas, Manuela M. Veloso

Computer Science Department Faculty Publication Series

Markov localization and its variants are widely used for localization of mobile robots. These methods assume Markov independence of observations, implying that observations made by a robot correspond to a static map. However, in real human environments, observations include occlusions due to unmapped objects like chairs and tables, and dynamic objects like humans. We introduce an episodic non-Markov localization algorithm that maintains estimates of the belief over the trajectory of the robot while explicitly reasoning about observations and their correlations arising from unmapped static objects, moving objects, as well as objects from the static map. Observations are classified as arising …


Autonomous Robot Skill Acquisition, George D. Konidaris May 2011

Autonomous Robot Skill Acquisition, George D. Konidaris

Open Access Dissertations

Among the most impressive of aspects of human intelligence is skill acquisition—the ability to identify important behavioral components, retain them as skills, refine them through practice, and apply them in new task contexts. Skill acquisition underlies both our ability to choose to spend time and effort to specialize at particular tasks, and our ability to collect and exploit previous experience to become able to solve harder and harder problems over time with less and less cognitive effort.

Hierarchical reinforcement learning provides a theoretical basis for skill acquisition, including principled methods for learning new skills and deploying them during problem solving. …


Corrective Gradient Refinement For Mobile Robot Localization, Joydeep Biswas, Manuela M. Veloso, Brian Coltin Jan 2011

Corrective Gradient Refinement For Mobile Robot Localization, Joydeep Biswas, Manuela M. Veloso, Brian Coltin

Computer Science Department Faculty Publication Series

Particle filters for mobile robot localization must balance computational requirements and accuracy of localization. Increasing the number of particles in a particle filter improves accuracy, but also increases the computational requirements. Hence, we investigate a different paradigm to better utilize particles than to increase their numbers. To this end, we introduce the Corrective Gradient Refinement (CGR) algorithm that uses the state space gradients of the observation model to improve accuracy while maintaining low computational requirements. We develop an observation model for mobile robot localization using point cloud sensors (LIDAR and depth cameras) with vector maps. This observation model is then …


Wifi Localization And Navigation For Autonomous Indoor Mobile Robots, Joydeep Biswas, Manuela M. Veloso Jan 2010

Wifi Localization And Navigation For Autonomous Indoor Mobile Robots, Joydeep Biswas, Manuela M. Veloso

Computer Science Department Faculty Publication Series

Building upon previous work that demonstrates the effectiveness of WiFi localization information per se, in this paper we contribute a mobile robot that autonomously navigates in indoor environments using WiFi sensory data. We model the world as a WiFi signature map with geometric constraints and introduce a continuous perceptual model of the environment generated from the discrete graph-based WiFi signal strength sampling. We contribute our WiFi localization algorithm which continuously uses the perceptual model to update the robot location in conjunction with its odometry data. We then briefly introduce a navigation approach that robustly uses the WiFi location estimates. We …


The Development Of Hierarchical Knowledge In Robot Systems, Stephen W. Hart Sep 2009

The Development Of Hierarchical Knowledge In Robot Systems, Stephen W. Hart

Open Access Dissertations

This dissertation investigates two complementary ideas in the literature on machine learning and robotics--those of embodiment and intrinsic motivation--to address a unified framework for skill learning and knowledge acquisition. "Embodied" systems make use of structure derived directly from sensory and motor configurations for learning behavior. Intrinsically motivated systems learn by searching for native, hedonic value through interaction with the world. Psychological theories of intrinsic motivation suggest that there exist internal drives favoring open-ended cognitive development and exploration. I argue that intrinsically motivated, embodied systems can learn generalizable skills, acquire control knowledge, and form an epistemological understanding of the world …